🦉 🎤   RapidMiner Wisdom 2020 - CALL FOR SPEAKERS   🦉 🎤

We are inviting all community members to submit proposals to speak at Wisdom 2020 in Boston.


Whether it's a cool RapidMiner trick or a use case implementation, we want to see what you have.
Form link is below and deadline for submissions is November 15. See you in Boston!

CLICK HERE TO GO TO ENTRY FORM

Vote Operator for different attributes

iasoniason Member Posts: 20  Maven
edited November 2018 in Help
I am trying to build a model ensemble using different predictors for each learner.
I thought of using a remove attribute operator before each learner.
Will the resulting model (taken from the "mod" output of the vote operator) account for all the predictors?

What confuses me is the way the first learner is used. As I understand it, the predictions of all other learners are used as input to the first one. What should be used as the first learner to achieve normal voting (ie output the majority class in a classification problem)?

Also, since it is a simillar subject, how can I bias the model selection for each class
for example:
if model A predicts class 1 then output is class 1
else output is model B prediction
Sign In or Register to comment.