Create model with R that have a validation

voxsim
voxsim New Altair Community Member
edited November 2024 in Community Q&A
Is there any way to create a model with extension of R?

I have to do a validation with Split-Validation, i read the code of some existing R classifier, but when I try to validate them as shown in the video tutorials, they don't return a valid object Model.

Tagged:

Answers

  • voxsim
    voxsim New Altair Community Member
    I merged decisiontree and execute scripts

    package com.rapidminer.operator.r;

    import java.net.URL;
    import java.util.List;

    import org.rosuda.REngine.REXP;
    import org.rosuda.REngine.REXPMismatchException;
    import org.rosuda.REngine.RList;

    import com.rapidminer.example.Attribute;
    import com.rapidminer.example.ExampleSet;
    import com.rapidminer.example.Statistics;
    import com.rapidminer.example.set.SplittedExampleSet;
    import com.rapidminer.operator.IOObject;
    import com.rapidminer.operator.Model;
    import com.rapidminer.operator.OperatorCapability;
    import com.rapidminer.operator.OperatorDescription;
    import com.rapidminer.operator.OperatorException;
    import com.rapidminer.operator.UserError;
    import com.rapidminer.parameter.ParameterType;
    import com.rapidminer.parameter.ParameterTypeString;
    import com.rapidminer.parameter.ParameterTypeText;
    import com.rapidminer.parameter.TextType;
    import com.rapidminer.tools.r.RPlotPainter;
    import com.rapidminer.tools.r.RSession;
    import com.rapidminer.tools.r.RSessionListener;
    import com.rapidminer.tools.r.RSessionManager;
    import com.rapidminer.tools.r.translation.RTranslations;
    import com.rapidminer.tools.r.translation.RTranslator;
    import com.rapidminer.operator.learner.AbstractLearner;
    import com.rapidminer.operator.learner.PredictionModel;
    import com.rapidminer.operator.learner.tree.GreaterSplitCondition;
    import com.rapidminer.operator.learner.tree.LessEqualsSplitCondition;
    import com.rapidminer.operator.learner.tree.NominalSplitCondition;
    import com.rapidminer.operator.learner.tree.SplitCondition;
    import com.rapidminer.operator.learner.tree.Tree;
    import com.rapidminer.operator.learner.tree.TreeModel;

    public class RDecisionTreeLearner extends AbstractLearner implements RSessionListener {
    public static final String PARAMETER_R_SCRIPT = "script";
    public static final String PARAMETER_INPUT = "input";
    public static final String PARAMETER_VARIABLE_NAME = "name_of_variable";

    private transient boolean isErrorOccurred = false;
    private transient String errorOccured;

    public RDecisionTreeLearner(OperatorDescription description) {
            super(description);
        }

    @Override
    public Class<? extends PredictionModel> getModelClass() {
    return TreeModel.class;
    }

    public List<ParameterType> getParameterTypes() {
    List<ParameterType> types = super.getParameterTypes();

    ParameterType type = new ParameterTypeText(PARAMETER_R_SCRIPT, "This script will be executed on one of the available R servers.", TextType.PLAIN, true);
    type.setExpert(false);
    types.add(type);
    type = new ParameterTypeString(PARAMETER_INPUT, "This assigns each input port a variable name. If the type of input object is supported by the R translation, it will be accessible under this variable name.");
    type.setExpert(false);
    types.add(type);

    return types;
    }

    public void changeTreeToLeaf(Tree node, ExampleSet exampleSet) {
            Attribute label = exampleSet.getAttributes().getLabel();
            exampleSet.recalculateAttributeStatistics(label);
            int labelValue = (int)exampleSet.getStatistics(label, Statistics.MODE);
           
            if(labelValue != -1) {
            String labelName = label.getMapping().mapIndex(labelValue);
            node.setLeaf(labelName);
            for (String value : label.getMapping().getValues()) {
            int count = (int)exampleSet.getStatistics(label, Statistics.COUNT, value);
            node.addCount(value, count);
            }
            }
        }

    public Tree getChilds(Tree current, Attribute bestAttribute, ExampleSet exampleSet, REXP payload, int depth) throws REXPMismatchException {
    int i = 0;
    int j = -1;
    SplittedExampleSet splitted = null;

    if(payload.isString()) {
    String[] names = payload._attr().asList().at(0).asStrings();
    String[] values = payload.asStrings();
    while (i < names.length) {
    String name = names;
    String value = values;

    if (name!=null && value!=null) {
    SplitCondition condition = null;

    if (bestAttribute.isNominal()) {
    condition = new NominalSplitCondition(bestAttribute, value);
    splitted = SplittedExampleSet.splitByAttribute(exampleSet, bestAttribute);
    j += 1;
    } else {
    double bestSplitValue = Double.valueOf(name.substring(2)).doubleValue();
    if (i == 0) {
    condition = new LessEqualsSplitCondition(bestAttribute, bestSplitValue);
    splitted = SplittedExampleSet.splitByAttribute(exampleSet, bestAttribute, bestSplitValue);
    j = 0;
    } else {
    condition = new GreaterSplitCondition(bestAttribute, bestSplitValue);
    j = 1;
    }
    }

    splitted.selectSingleSubset(j);
    ExampleSet eSet = (ExampleSet)splitted.clone();
    Tree child = new Tree(eSet);
    child.setLeaf(value);
    changeTreeToLeaf(child, eSet);
    current.addChild(child, condition);
    }
    i++;
    }
    return current;
    }

    if(payload.isList()) {
    RList rList = payload.asList();
    while (i < payload.length()) {
    String name = rList.keyAt(i);
    if (name!=null) {
    SplitCondition condition = null;

    if (bestAttribute.isNominal()) {
    condition = new NominalSplitCondition(bestAttribute, name);
    splitted = SplittedExampleSet.splitByAttribute(exampleSet, bestAttribute);
    j += 1;
    } else {
    double bestSplitValue = Double.valueOf(name.substring(2)).doubleValue();
    if (i == 0) {
    condition = new LessEqualsSplitCondition(bestAttribute, bestSplitValue);
    splitted = SplittedExampleSet.splitByAttribute(exampleSet, bestAttribute, bestSplitValue);
    j = 0;
    } else {
    condition = new GreaterSplitCondition(bestAttribute, bestSplitValue);
    j = 1;
    }
    }

    splitted.selectSingleSubset(j);
    Tree child = buildTreeFromR((ExampleSet)splitted.clone(), rList.at(i), depth);
    current.addChild(child, condition);
    }
    i++;
    }
    return current;
    }

    return current;
    }

    // Pari un nodo, dispari un arco
    public Tree buildTreeFromR(ExampleSet exampleSet, REXP payload, int depth) throws REXPMismatchException {
    Tree current = null;

    if(payload.isString() && payload.length() == 1) {
    String name = payload.asString();
    current = new Tree((ExampleSet) exampleSet.clone());
    current.setLeaf(name);
    changeTreeToLeaf(current, exampleSet);
    return current;
    }

    int i = 0;
    if(payload.isList()) {
    RList rList = payload.asList();
    while (i < payload.length()) {
    String name = rList.keyAt(i);
    if (name!=null) {
    current = new Tree((ExampleSet) exampleSet.clone());
    current.setLeaf(name);

    Attribute bestAttribute = exampleSet.getAttributes().get(name);
    current = getChilds(current, bestAttribute, exampleSet, rList.at(i), depth+1);
    }
    i++;
    }
    return current;
    }

    return current;
    }

    public Tree translateRTreeToTree(ExampleSet exampleSet) throws OperatorException {
    isErrorOccurred = false;
    errorOccured = null;

    Tree root = new Tree((ExampleSet)exampleSet.clone());
    root.setLeaf("Errore");
    /*Attribute label = exampleSet.getAttributes().get("TargetRelativo");
    exampleSet.getAttributes().setLabel(label);*/

    // try retrieving the connection
    RSession rSession = null;
    rSession = RSessionManager.acquireSession();
    rSession.registerSessionListener(this);

    try {
    // making RapidMiner Input available in R
    String inputVariableName = getParameterAsString(PARAMETER_INPUT);
    RTranslator<? extends IOObject> translator = RTranslations.getTranslators(ExampleSet.class);
    if (translator != null) {
    translator.exportObject(rSession, inputVariableName, (IOObject) exampleSet);
    } else {
    throw new UserError(this, "r.no_translator_available", ExampleSet.class.getSimpleName());
    }

    if (isParameterSet(PARAMETER_R_SCRIPT))
    rSession.execute(getParameterAsString(PARAMETER_R_SCRIPT));
    // checking for errors during execution occurred on log
    if (isErrorOccurred)
    throw new UserError(this, new Throwable(errorOccured), "r.r_error");

    REXP payload = rSession.eval("result");
    root = buildTreeFromR(exampleSet, payload, 0);
    } catch (REXPMismatchException e) {
    e.printStackTrace();
    } finally {
    RSessionManager.releaseSession(rSession);
    }

    return root;
    }

    @Override
    public Model learn(ExampleSet exampleSet) throws OperatorException {
    // learn tree
    Tree root = translateRTreeToTree(exampleSet);
    // create and return model
    return new TreeModel(exampleSet, root);
    }

    @Override
    public boolean supportsCapability(OperatorCapability capability) {
    switch (capability) {
            case BINOMINAL_ATTRIBUTES:
            case POLYNOMINAL_ATTRIBUTES:
            case NUMERICAL_ATTRIBUTES:
            case POLYNOMINAL_LABEL:
            case BINOMINAL_LABEL:
            case WEIGHTED_EXAMPLES:
            case MISSING_VALUES:
                return true;
            default:
                return false;
            }
    }

    @Override
    public void informErrors(String[] errors) {
    StringBuilder builder = new StringBuilder();
    for (String error : errors) {
    isErrorOccurred = true;
    builder.append(error);
    logError(error);
    }
    errorOccured = builder.toString();
    }

    @Override
    public void informWarnings(String[] warnings) {
    for (String warning : warnings)
    logWarning(warning);
    }

    @Override
    public void informOutput(String[] text) {
    for (String warning : text)
    logNote(warning);
    }
    /* Ignore following events */
    @Override
    public void informAssignment(RSession session) {
    }

    @Override
    public void informEvaluation(RSession session) {
    }

    @Override
    public void informExecution(RSession session) {
    }

    @Override
    public void informInterpretation(RSession session) {
    }

    @Override
    public void notifyPlotListener(RPlotPainter plotPainter) {
    }

    @Override
    public void informHelpChange(URL helpPage) {
    }
    }
    This run well .. i put the result in a variable called result. The script in R is an implementation of C4.5 and the result is an associative array.

    Simon

Welcome!

It looks like you're new here. Sign in or register to get started.

Welcome!

It looks like you're new here. Sign in or register to get started.