Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.
Answers
Attached below is a process that uses a Bayesian Network inside x-validation.
It loads the famous play tennis data and builds a Bayesian Network (using -- -P 22 to get a real network).
I double checked that the results look the same in Weka as they do in Rapid Miner.
The only problem I can find is that you can not turn off the "use AD Tree" in Rapid Miner.
Correctly Classified Instances 9 64.2857 %
Incorrectly Classified Instances 5 35.7143 %
accuracy: 60.00% +/- 43.59% (mikro: 64.29%)
Best regards,
Wessel
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.2.006">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.2.006" expanded="true" name="Process">
<parameter key="logverbosity" value="status"/>
<process expanded="true" height="392" width="300">
<operator activated="true" class="retrieve" compatibility="5.2.006" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30">
<parameter key="repository_entry" value="//Samples/data/Golf"/>
</operator>
<operator activated="true" class="x_validation" compatibility="5.2.006" expanded="true" height="112" name="Validation" width="90" x="180" y="30">
<process expanded="true" height="392" width="165">
<operator activated="true" class="weka:W-BayesNet" compatibility="5.1.001" expanded="true" height="76" name="W-BayesNet" width="90" x="45" y="30">
<parameter key="Q" value="weka.classifiers.bayes.net.search.local.K2 -- -P 22 -S BAYES"/>
<parameter key="E" value="weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 0.5"/>
</operator>
<connect from_port="training" to_op="W-BayesNet" to_port="training set"/>
<connect from_op="W-BayesNet" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="392" width="165">
<operator activated="true" class="apply_model" compatibility="5.2.006" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_classification" compatibility="5.2.006" expanded="true" height="76" name="Performance" width="90" x="45" y="120">
<list key="class_weights"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<connect from_op="Retrieve" from_port="output" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="model" to_port="result 1"/>
<connect from_op="Validation" from_port="training" to_port="result 2"/>
<connect from_op="Validation" from_port="averagable 1" to_port="result 3"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<portSpacing port="sink_result 4" spacing="0"/>
</process>
</operator>
</process>
was getting butt load of wild errors with any weka learner in validation wrapped in param opt(worked fine with e.g. NN).
will look into it...
Weka learners can sometimes be a bit counter intuitive to get working, but they should work.
Now am testing some simple flows using xval,boostin... and all is fine.
maybe tomorrow ill try optimization again and will see.
Best, Marius