The RapidMiner community is on read-only mode until further notice. Technical support via cases will continue to work as is. For any urgent licensing related requests from Students/Faculty members, please use the Altair academic forum here.

Combining Multiple Imputation in Rapid miner

faridehbagherzafaridehbagherza Member Posts: 22 Contributor II
edited November 2018 in Help
Hi! I used R for multiple imputation and imputed 5 Imputations of my data. For the Model, I am using a stacking model of 3 base learners.
I don`t know what I should do with these imputations of the data. Should I train all my base learners with all these imputations individually?
That sounds right, but it takes a lot of time to train each of the base learners with each of the imputed data sets and then again train the stacked model with each of the imputed data sets!
Anyway, if that`s right, how can I combine the five models learned by 5 imputed data sets?
I mean, for example, to combine models for a stacking model, or addaboost or ... there are operators, but to combine models built from different imputed data sets, I couldn`t find any operator!

Answers

Sign In or Register to comment.