🦉 🎤   RapidMiner Wisdom 2020 - CALL FOR SPEAKERS   🦉 🎤

We are inviting all community members to submit proposals to speak at Wisdom 2020 in Boston.


Whether it's a cool RapidMiner trick or a use case implementation, we want to see what you have.
Form link is below and deadline for submissions is November 15. See you in Boston!

CLICK HERE TO GO TO ENTRY FORM

X-Validation and Performance operators - % of accuracy from each feature

drvdrv Member Posts: 1 Contributor I
edited July 7 in Help
Hi,

I have a feature set of 100 features for 200 input samples. I am using Rapid miner as follows:
Main Process: Feature Vector-> X-Validation.
X-Validation Process:
Training: Logistic Regression operator / Decision tree
Testing : Apply model --> Performance

Features are Entropy, edgedensity, etc of 200 image samples. Labels are Class 1 and Class 2 in Text. Feature values are decimal numbers.

I would like to know how I can find the accuracy of individual feature (100 features) towards the performance accuracy of classifying Class 1 and Class 2 (E.g:  How much accuracy does entropy gives in classification, how much accuracy does edge density gives in classification etc.). Also how I can find which all features contribute the most maximum towards the overall accuracy result.

Thanks,
drv
Sign In or Register to comment.