The Altair Community is migrating to a new platform to provide a better experience for you. The RapidMiner Community will merge with the Altair Community at the same time. In preparation for the migration, both communities are on read-only mode from July 15th - July 24th, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here.

"Expectation Mazimization Clustering very, very slow."

Nick595Nick595 Member Posts: 2 Contributor I
edited June 2019 in Help
Hi all, 

I'm learning more about Expectation Maximization Clustering, which I believe could be very helpful for my thesis. I have a dataset that contains a few hundred of reviews. I want to discover hidden topics within these reviews, and see the probability that a review belongs to cluster 1, cluster 2, etc. However, when trying to stem and tokenize the data, and then clustering, the process is taking hours. I have 8GB available, but after 3 hours there is still no result.

My process is below

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="6.5.001">
 <operator activated="true" class="process" compatibility="6.5.001" expanded="true" name="Process">
   <process expanded="true">
     <operator activated="true" class="read_excel" compatibility="6.5.001" expanded="true" height="60" name="Read Excel" width="90" x="45" y="30">
       <parameter key="excel_file" value="C:\Users\Nick\Documents\Thesis DataSets\AudioSentenceReview2.xlsx"/>
       <parameter key="imported_cell_range" value="B1:B1337"/>
       <parameter key="first_row_as_names" value="false"/>
       <list key="annotations">
         <parameter key="0" value="Name"/>
       <list key="data_set_meta_data_information">
         <parameter key="0" value="Sentence .true.text.attribute"/>
     <operator activated="true" class="nominal_to_text" compatibility="6.5.001" expanded="true" height="76" name="Nominal to Text" width="90" x="112" y="120"/>
     <operator activated="true" class="text:process_document_from_data" compatibility="6.5.000" expanded="true" height="76" name="Process Documents from Data" width="90" x="246" y="210">
       <parameter key="keep_text" value="true"/>
       <parameter key="prune_method" value="absolute"/>
       <parameter key="prune_below_absolute" value="2"/>
       <parameter key="prune_above_absolute" value="999"/>
       <list key="specify_weights"/>
       <process expanded="true">
         <operator activated="true" class="text:tokenize" compatibility="6.5.000" expanded="true" height="60" name="Tokenize" width="90" x="112" y="30"/>
         <operator activated="true" class="text:transform_cases" compatibility="6.5.000" expanded="true" height="60" name="Transform Cases" width="90" x="246" y="30"/>
         <operator activated="true" class="text:filter_stopwords_english" compatibility="6.5.000" expanded="true" height="60" name="Filter Stopwords (English)" width="90" x="447" y="120"/>
         <operator activated="true" class="text:stem_snowball" compatibility="6.5.000" expanded="true" height="60" name="Stem (Snowball)" width="90" x="447" y="255"/>
         <operator activated="true" class="text:filter_by_length" compatibility="6.5.000" expanded="true" height="60" name="Filter Tokens (by Length)" width="90" x="514" y="30">
           <parameter key="min_chars" value="3"/>
           <parameter key="max_chars" value="99"/>
         <connect from_port="document" to_op="Tokenize" to_port="document"/>
         <connect from_op="Tokenize" from_port="document" to_op="Transform Cases" to_port="document"/>
         <connect from_op="Transform Cases" from_port="document" to_op="Filter Stopwords (English)" to_port="document"/>
         <connect from_op="Filter Stopwords (English)" from_port="document" to_op="Stem (Snowball)" to_port="document"/>
         <connect from_op="Stem (Snowball)" from_port="document" to_op="Filter Tokens (by Length)" to_port="document"/>
         <connect from_op="Filter Tokens (by Length)" from_port="document" to_port="document 1"/>
         <portSpacing port="source_document" spacing="0"/>
         <portSpacing port="sink_document 1" spacing="0"/>
         <portSpacing port="sink_document 2" spacing="0"/>
     <operator activated="true" class="expectation_maximization_clustering" compatibility="6.5.001" expanded="true" height="76" name="Clustering (2)" width="90" x="380" y="120"/>
     <operator activated="true" class="write_excel" compatibility="6.5.001" expanded="true" height="76" name="Write Excel" width="90" x="514" y="255">
       <parameter key="excel_file" value="C:\Users\Nick\Documents\excelbestand 1.xlsx"/>
     <connect from_op="Read Excel" from_port="output" to_op="Nominal to Text" to_port="example set input"/>
     <connect from_op="Nominal to Text" from_port="example set output" to_op="Process Documents from Data" to_port="example set"/>
     <connect from_op="Process Documents from Data" from_port="example set" to_op="Clustering (2)" to_port="example set"/>
     <connect from_op="Clustering (2)" from_port="cluster model" to_port="result 1"/>
     <connect from_op="Clustering (2)" from_port="clustered set" to_op="Write Excel" to_port="input"/>
     <connect from_op="Write Excel" from_port="through" to_port="result 2"/>
     <portSpacing port="source_input 1" spacing="0"/>
     <portSpacing port="sink_result 1" spacing="0"/>
     <portSpacing port="sink_result 2" spacing="0"/>
     <portSpacing port="sink_result 3" spacing="0"/>
Could anyone explain to me what im doing wrong here?
Sign In or Register to comment.