Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.
Difference in classification accuracy(performance vector) for same input -
Could you please clarify,
Why Im getting different accuracies (performance vector result) for the same input supplied to two similar models.
see my next post with similar kind of problem
Why Im getting different accuracies (performance vector result) for the same input supplied to two similar models.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.2.008">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process">
<process expanded="true" height="467" width="748">
<operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30">
<parameter key="repository_entry" value="//Samples/data/Sonar"/>
</operator>
<operator activated="true" class="multiply" compatibility="5.2.008" expanded="true" height="76" name="Multiply" width="90" x="45" y="120"/>
<operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes (2)" width="90" x="179" y="75">
<parameter key="attribute_filter_type" value="subset"/>
<parameter key="attributes" value="attribute_14|attribute_15|attribute_16|attribute_17|attribute_18|attribute_19|attribute_2|attribute_22|attribute_23|attribute_24|attribute_25|attribute_26|attribute_27|attribute_28|attribute_29|attribute_3|attribute_30|attribute_31|attribute_32|attribute_33|attribute_34|attribute_38|attribute_39|attribute_40|attribute_41|attribute_42|attribute_50|attribute_53|attribute_55|attribute_56|attribute_57|attribute_58|attribute_59|attribute_60|attribute_7|attribute_6|attribute_8|attribute_35|attribute_20|attribute_5|attribute_54"/>
<parameter key="invert_selection" value="true"/>
</operator>
<operator activated="true" class="multiply" compatibility="5.2.008" expanded="true" height="94" name="Multiply (2)" width="90" x="246" y="165"/>
<operator activated="true" class="x_validation" compatibility="5.2.008" expanded="true" height="112" name="Validation (2)" width="90" x="380" y="30">
<process expanded="true" height="414" width="346">
<operator activated="true" class="decision_tree" compatibility="5.2.008" expanded="true" height="76" name="Decision Tree (2)" width="90" x="132" y="30"/>
<connect from_port="training" to_op="Decision Tree (2)" to_port="training set"/>
<connect from_op="Decision Tree (2)" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="414" width="346">
<operator activated="true" class="apply_model" compatibility="5.2.008" expanded="true" height="76" name="Apply Model (2)" width="90" x="45" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_classification" compatibility="5.2.008" expanded="true" height="76" name="Performance (2)" width="90" x="200" y="30">
<list key="class_weights"/>
</operator>
<connect from_port="model" to_op="Apply Model (2)" to_port="model"/>
<connect from_port="test set" to_op="Apply Model (2)" to_port="unlabelled data"/>
<connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
<connect from_op="Performance (2)" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="x_validation" compatibility="5.2.008" expanded="true" height="112" name="Validation (3)" width="90" x="380" y="165">
<process expanded="true" height="396" width="346">
<operator activated="true" class="decision_tree" compatibility="5.2.008" expanded="true" height="76" name="Decision Tree (3)" width="90" x="132" y="30"/>
<connect from_port="training" to_op="Decision Tree (3)" to_port="training set"/>
<connect from_op="Decision Tree (3)" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="396" width="346">
<operator activated="true" class="apply_model" compatibility="5.2.008" expanded="true" height="76" name="Apply Model (3)" width="90" x="45" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_classification" compatibility="5.2.008" expanded="true" height="76" name="Performance (3)" width="90" x="200" y="30">
<list key="class_weights"/>
</operator>
<connect from_port="model" to_op="Apply Model (3)" to_port="model"/>
<connect from_port="test set" to_op="Apply Model (3)" to_port="unlabelled data"/>
<connect from_op="Apply Model (3)" from_port="labelled data" to_op="Performance (3)" to_port="labelled data"/>
<connect from_op="Performance (3)" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<connect from_op="Retrieve" from_port="output" to_op="Multiply" to_port="input"/>
<connect from_op="Multiply" from_port="output 1" to_op="Select Attributes (2)" to_port="example set input"/>
<connect from_op="Select Attributes (2)" from_port="example set output" to_op="Multiply (2)" to_port="input"/>
<connect from_op="Multiply (2)" from_port="output 1" to_op="Validation (2)" to_port="training"/>
<connect from_op="Multiply (2)" from_port="output 2" to_op="Validation (3)" to_port="training"/>
<connect from_op="Validation (2)" from_port="training" to_port="result 1"/>
<connect from_op="Validation (2)" from_port="averagable 1" to_port="result 2"/>
<connect from_op="Validation (3)" from_port="training" to_port="result 3"/>
<connect from_op="Validation (3)" from_port="averagable 1" to_port="result 4"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<portSpacing port="sink_result 4" spacing="0"/>
<portSpacing port="sink_result 5" spacing="0"/>
</process>
</operator>
</process>
see my next post with similar kind of problem
Tagged:
0
Answers
Further why the accuracy(performance vector) for the validation operator 1 ( with Decision tree) [ jointly worked with validation operator 2( with KNN)] is not same with validation operator1 (with Decision tree)
Process 1 -
i/p A - validation operator (DT) - o/p (performance vector) = X,
i/p A - validation operator (kNN) - o/p (performance vector) = y
Process 2-
i/p A - validation operator (DT) - o/p (performance vector) = Z (This should be X)
where X, Y, and Z are some numeric values.
Code is given for both the process
Process1 process 2: Why the result changes from process to process with same input and model
My work halted with ambiguity in results
Clarify me
Thanking you in anticipation
Furthermore I strongly suggest to update from RapidMiner 5.2.8, which is years old, to the current version 5.3.13.
If you have any further questions, please come back!
Best regards,
Marius
weka book:
http://www.cs.waikato.ac.nz/ml/weka/book.html
rapid miner book:
http://rapidminerbook.com/