Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.

"Gamma Linear Regression - Do RapidMiner support this function?"

archiquearchique Member Posts: 1 Learner III
edited June 2019 in Help
Hi All,

I want to perform cross validation of linear regression, but in my case, my data do not support linear regression. I need to use Gamma Log Linear Regression. Could you please suggest which modelling function should I use? I have tried Linear Regression but when I compare the results using SPSS, it shows a big different.


Thanks,
Shahida
Tagged:

Answers

  • earmijoearmijo Member Posts: 271 Unicorn
    That I know there is no such operator in Rapidminer.

    What would I do? I would do it in R. I'm thinking of

    glm(count ~ x1+x2+x3, data=mydata, family=poisson())

    If you still want to do a lot of computations in RapidMiner I would use "Execute R Script".

    Here's a process (the dataset warpbreaks comes with R)
    <?xml version="1.0" encoding="UTF-8" standalone="no"?>
    <process version="6.5.002">
      <context>
        <input/>
        <output/>
        <macros/>
      </context>
      <operator activated="true" class="process" compatibility="6.5.002" expanded="true" name="Process">
        <process expanded="true">
          <operator activated="true" breakpoints="after" class="retrieve" compatibility="6.5.002" expanded="true" height="60" name="Read Warpbreaks" width="90" x="45" y="30">
            <parameter key="repository_entry" value="//Clases/data/warpbreaks"/>
            <description align="center" color="blue" colored="true" width="126">Read Warpbreaks Dataset</description>
          </operator>
          <operator activated="true" class="split_data" compatibility="6.5.002" expanded="true" height="94" name="Split Data" width="90" x="246" y="30">
            <enumeration key="partitions">
              <parameter key="ratio" value="0.75"/>
              <parameter key="ratio" value="0.25"/>
            </enumeration>
            <description align="center" color="purple" colored="true" width="126">Split the data in a training and a test set</description>
          </operator>
          <operator activated="true" class="r_scripting:execute_r" compatibility="6.5.000" expanded="true" height="76" name="Learn Model" width="90" x="514" y="30">
            <parameter key="script" value="# train a Poisson model on the training data and return the learned model&#10;&#10;rm_main = function(data)&#10;{&#10;&#9;PoissonModel &lt;- lm(formula =breaks ~ . ,  data =data,family=poisson())&#10;    &#9;return(PoissonModel)&#10;}&#10;"/>
            <description align="center" color="red" colored="true" width="126">Train a Poisson model in R and return it as an R object</description>
          </operator>
          <operator activated="true" class="r_scripting:execute_r" compatibility="6.5.000" expanded="true" height="94" name="Apply R Model" width="90" x="648" y="210">
            <parameter key="script" value="## load the trained model and apply it on the test data&#10;&#10;rm_main = function(model, data)&#10;{&#10;  &#10;  # apply the model and build a prediction&#10;  result &lt;-predict(model, data)&#10;&#10;  # add the prediction to the example set&#10;  data$prediction &lt;- result&#10;  &#10;  # update the meta data&#10;  metaData$data$prediction &lt;&lt;- list(type=&quot;real&quot;, role=&quot;prediction&quot;)&#10;  &#10;  return(data)&#10;}&#10;"/>
            <description align="center" color="red" colored="true" width="126">Apply the trained model on the test data</description>
          </operator>
          <connect from_op="Read Warpbreaks" from_port="output" to_op="Split Data" to_port="example set"/>
          <connect from_op="Split Data" from_port="partition 1" to_op="Learn Model" to_port="input 1"/>
          <connect from_op="Split Data" from_port="partition 2" to_op="Apply R Model" to_port="input 2"/>
          <connect from_op="Learn Model" from_port="output 1" to_op="Apply R Model" to_port="input 1"/>
          <connect from_op="Apply R Model" from_port="output 1" to_port="result 1"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_result 1" spacing="0"/>
          <portSpacing port="sink_result 2" spacing="0"/>
        </process>
      </operator>
    </process>
Sign In or Register to comment.