Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.
[SOLVED] Select Hyperparameters of SVM in cross-validation?
johnny5550822
Member Posts: 12 Contributor II
Hi,
I want to clarify one thing about what rapidminer exactly is doing. When I put a SVM module inside cross-validation (e.g. 10-fold), will the SVM algoirithm optimize the hyperparameters (e.g. C) based on cross-validation result?
If so, what about if I don't have validation, and basically just give data to SVM module, how does rapidminer get the hyperparameters value?
Thanks,
Johnny
I want to clarify one thing about what rapidminer exactly is doing. When I put a SVM module inside cross-validation (e.g. 10-fold), will the SVM algoirithm optimize the hyperparameters (e.g. C) based on cross-validation result?
If so, what about if I don't have validation, and basically just give data to SVM module, how does rapidminer get the hyperparameters value?
Thanks,
Johnny
Tagged:
0
Answers
If you want to optimize e.g. "C" you have to put the CV into the "Optimize Parameters" Operator that performs a training/validating with
all selected values of C. Take a look into the example process delivered together with the operators help.