Cross-Validation returns different model

mark42
mark42 New Altair Community Member
edited November 2024 in Community Q&A

Hello,

I am using RapidMiner Studio 7.2.002 and recognized something strange after training libSVM (nu-SVC, linear kernel) classifier within X-Validation and outside X-Validation (with the same parameters): the output models are different! According to the documentation of the X-Validation operator the output model is trained on the whole example set, which would be the same as just using the libSVM training.

 

Do I miss anything or why are these models different although the operators, parameter and data are the same?

 

Best
Mark

 

 

Answers

  • MartinLiebig
    MartinLiebig
    Altair Employee

    Hi Mark,

     

    the only way i can imagine that this one happens is that their is a randomness in the algorithm or the starting points of the optimization make a difference. I've tested it on sonar and saw no difference - but that might not be that meaningful.

     

    Are you doing some kind of preprocessing inside x-val which might be different?

     

     

    ~martin

  • mark42
    mark42 New Altair Community Member

    Hi Martin,

     

    I don't use any preprocessing inside the X-Validation: only libSVM, Apply Model and Performance Classification (Accuracy).  The data and parameters are the same.

     

    Best

    Mark

Welcome!

It looks like you're new here. Sign in or register to get started.

Welcome!

It looks like you're new here. Sign in or register to get started.