The RapidMiner community is on read-only mode until further notice. Technical support via cases will continue to work as is. For any urgent licensing related requests from Students/Faculty members, please use the Altair academic forum here.

input example set does not have a predicted label attribute

mndtmndt Member Posts: 1 Learner III
edited November 2018 in Help

I'm trying to use "fit trend" and "Neural Net" tor find the trend line fot a time series.

Desipite using  "Set Role" operator to set the attribute as lable, I still receive the error "input example set does not have a predicted label attribute" in latest version of Rapidminer studio:

Here is the project:

 

<?xml version="1.0" encoding="UTF-8"?><process version="7.4.000">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="7.4.000" expanded="true" name="Process">
    <parameter key="logverbosity" value="init"/>
    <parameter key="random_seed" value="2001"/>
    <parameter key="send_mail" value="never"/>
    <parameter key="notification_email" value=""/>
    <parameter key="process_duration_for_mail" value="30"/>
    <parameter key="encoding" value="SYSTEM"/>
    <process expanded="true">
      <operator activated="true" class="read_csv" compatibility="7.4.000" expanded="true" height="68" name="Read CSV" width="90" x="45" y="34">
        <parameter key="csv_file" value="C:\Users\__\Desktop\Sample.csv"/>
        <parameter key="column_separators" value=","/>
        <parameter key="trim_lines" value="false"/>
        <parameter key="use_quotes" value="true"/>
        <parameter key="quotes_character" value="&quot;"/>
        <parameter key="escape_character" value="\"/>
        <parameter key="skip_comments" value="false"/>
        <parameter key="comment_characters" value="#"/>
        <parameter key="parse_numbers" value="true"/>
        <parameter key="decimal_character" value="."/>
        <parameter key="grouped_digits" value="false"/>
        <parameter key="grouping_character" value=","/>
        <parameter key="date_format" value=""/>
        <parameter key="first_row_as_names" value="false"/>
        <list key="annotations">
          <parameter key="0" value="Name"/>
        </list>
        <parameter key="time_zone" value="SYSTEM"/>
        <parameter key="locale" value="English (United States)"/>
        <parameter key="encoding" value="windows-1252"/>
        <list key="data_set_meta_data_information">
          <parameter key="0" value="&lt;Ticker&gt;.true.polynominal.attribute"/>
          <parameter key="1" value="&lt;Per&gt;.true.polynominal.attribute"/>
          <parameter key="2" value="&lt;DTYYYYMMDD&gt;.true.integer.attribute"/>
          <parameter key="3" value="&lt;TIME&gt;.true.integer.attribute"/>
          <parameter key="4" value="&lt;Open&gt;.true.real.attribute"/>
          <parameter key="5" value="&lt;High&gt;.true.real.attribute"/>
          <parameter key="6" value="&lt;Low&gt;.true.real.attribute"/>
          <parameter key="7" value="&lt;Close&gt;.true.real.label"/>
          <parameter key="8" value="&lt;Vol&gt;.true.integer.attribute"/>
          <parameter key="9" value="&lt;Openint&gt;.true.real.attribute"/>
        </list>
        <parameter key="read_not_matching_values_as_missings" value="true"/>
        <parameter key="datamanagement" value="double_array"/>
        <parameter key="data_management" value="auto"/>
      </operator>
      <operator activated="true" class="set_role" compatibility="7.4.000" expanded="true" height="82" name="Set Role" width="90" x="179" y="34">
        <parameter key="attribute_name" value="&lt;Close&gt;"/>
        <parameter key="target_role" value="label"/>
        <list key="set_additional_roles"/>
      </operator>
      <operator activated="true" class="series:fit_trend" compatibility="5.3.000" expanded="true" height="68" name="Fit Trend" width="90" x="313" y="34">
        <parameter key="attribute" value="&lt;Close&gt;"/>
        <parameter key="keep_original_attribute" value="true"/>
        <process expanded="true">
          <operator activated="true" class="neural_net" compatibility="7.4.000" expanded="true" height="82" name="Neural Net" width="90" x="179" y="85">
            <list key="hidden_layers"/>
            <parameter key="training_cycles" value="500"/>
            <parameter key="learning_rate" value="0.5"/>
            <parameter key="momentum" value="0.4"/>
            <parameter key="decay" value="true"/>
            <parameter key="shuffle" value="true"/>
            <parameter key="normalize" value="true"/>
            <parameter key="error_epsilon" value="1.0E-5"/>
            <parameter key="use_local_random_seed" value="false"/>
            <parameter key="local_random_seed" value="1992"/>
          </operator>
          <connect from_port="example set" to_op="Neural Net" to_port="training set"/>
          <connect from_op="Neural Net" from_port="model" to_port="model"/>
          <portSpacing port="source_example set" spacing="0"/>
          <portSpacing port="sink_model" spacing="0"/>
        </process>
      </operator>
      <connect from_op="Read CSV" from_port="output" to_op="Set Role" to_port="example set input"/>
      <connect from_op="Set Role" from_port="example set output" to_op="Fit Trend" to_port="example set"/>
      <connect from_op="Fit Trend" from_port="example set with trend" to_port="result 1"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
    </process>
  </operator>
</process>

Answers

  • Telcontar120Telcontar120 RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 1,635 Unicorn

    "Fit Trend" requires a prediction rather than just a label.  So you already must have built a model and you feed that into "Fit Trend" and it then fits a trendline to the prediction.  See the attached process.

     

    Brian T.
    Lindon Ventures 
    Data Science Consulting from Certified RapidMiner Experts
  • jeroen_willemsjeroen_willems Member Posts: 1 Contributor I

    Hi Brian,

    I used your process, but the trend output is the same as the prediction output. Even if I use default model operator as inner learner for the fit trend. Do I something wrong with the date attribute?

     

    In addition why is this operator needing a predicted label attribute? In the tutorial of Thomas Ott (http://www.neuralmarkettrends.com/rapidminer-5-0-video-tutorial-8/) a fit trend operator is directly used on a data set. I tried building this process as well, but get the same error as above above (example set is missing predicted label attribute).

     

    Hope you can help me.

     

    Thanks,

    Jeroen

Sign In or Register to comment.