Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.

Decision tree, random forest and classification of data set

g_pawarg_pawar Member Posts: 3 Learner III
edited January 2020 in Help

Hi All,

I am new to the rapid miner. Could some one please help me to create a decision tree and random forest (got 1 target attribute and 12 parameters influencing it). Also I need to classify the data (with regression) based on the output. The main objective is to check whether a single parameter or a combination of 2 or 4 or 5 parameters significantly  or moderately influences the the main target attribute ?  The data is attached for your reference. I tried working on selecting attributes, set roles but got some errors like missing labels and parameter missing.

Thanks, 

Gopal 

GP.csv 47.4K

Best Answer

  • lionelderkrikorlionelderkrikor RapidMiner Certified Analyst, Member Posts: 1,195 Unicorn
    Solution Accepted

    Hi Gopal,

     

    It seems there is a problem with your XML code : It cannot be loaded. Can you verify it.

    Meanwhile, you can find an example of process including a decision tree model with your data : 

    <?xml version="1.0" encoding="UTF-8"?><process version="8.1.000">
    <context>
    <input/>
    <output/>
    <macros/>
    </context>
    <operator activated="true" class="process" compatibility="8.1.000" expanded="true" name="Process">
    <process expanded="true">
    <operator activated="true" class="read_csv" compatibility="8.1.000" expanded="true" height="68" name="Read CSV" width="90" x="45" y="34">
    <parameter key="csv_file" value="C:\Users\Lionel\Documents\Formations_DataScience\Rapidminer\Tests_Rapidminer\Decision_tree_basic\GP.csv"/>
    <parameter key="column_separators" value=","/>
    <parameter key="first_row_as_names" value="false"/>
    <list key="annotations">
    <parameter key="0" value="Name"/>
    </list>
    <parameter key="encoding" value="windows-1252"/>
    <list key="data_set_meta_data_information">
    <parameter key="0" value="1.true.real.attribute"/>
    <parameter key="1" value="2.true.real.attribute"/>
    <parameter key="2" value="3.true.real.attribute"/>
    <parameter key="3" value="4.true.integer.attribute"/>
    <parameter key="4" value="5.true.integer.attribute"/>
    <parameter key="5" value="6.true.integer.attribute"/>
    <parameter key="6" value="7.true.integer.attribute"/>
    <parameter key="7" value="8.true.integer.attribute"/>
    <parameter key="8" value="9.true.real.attribute"/>
    <parameter key="9" value="10.true.real.attribute"/>
    <parameter key="10" value="11.true.real.attribute"/>
    <parameter key="11" value="12.true.real.attribute"/>
    <parameter key="12" value="Main attribute.true.real.attribute"/>
    <parameter key="13" value="13.true.real.attribute"/>
    </list>
    </operator>
    <operator activated="true" class="set_role" compatibility="8.1.000" expanded="true" height="82" name="Set Role" width="90" x="380" y="34">
    <parameter key="attribute_name" value="Main attribute"/>
    <parameter key="target_role" value="label"/>
    <list key="set_additional_roles"/>
    </operator>
    <operator activated="true" class="concurrency:cross_validation" compatibility="8.1.000" expanded="true" height="145" name="Cross Validation" width="90" x="514" y="34">
    <process expanded="true">
    <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="8.1.000" expanded="true" height="103" name="Decision Tree" width="90" x="179" y="34">
    <parameter key="criterion" value="least_square"/>
    </operator>
    <connect from_port="training set" to_op="Decision Tree" to_port="training set"/>
    <connect from_op="Decision Tree" from_port="model" to_port="model"/>
    <portSpacing port="source_training set" spacing="0"/>
    <portSpacing port="sink_model" spacing="0"/>
    <portSpacing port="sink_through 1" spacing="0"/>
    </process>
    <process expanded="true">
    <operator activated="true" class="apply_model" compatibility="8.1.000" expanded="true" height="82" name="Apply Model" width="90" x="112" y="34">
    <list key="application_parameters"/>
    </operator>
    <operator activated="true" class="performance_regression" compatibility="8.1.000" expanded="true" height="82" name="Performance" width="90" x="246" y="34">
    <parameter key="correlation" value="true"/>
    </operator>
    <connect from_port="model" to_op="Apply Model" to_port="model"/>
    <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
    <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
    <connect from_op="Performance" from_port="performance" to_port="performance 1"/>
    <portSpacing port="source_model" spacing="0"/>
    <portSpacing port="source_test set" spacing="0"/>
    <portSpacing port="source_through 1" spacing="0"/>
    <portSpacing port="sink_test set results" spacing="0"/>
    <portSpacing port="sink_performance 1" spacing="0"/>
    <portSpacing port="sink_performance 2" spacing="0"/>
    </process>
    </operator>
    <connect from_op="Read CSV" from_port="output" to_op="Set Role" to_port="example set input"/>
    <connect from_op="Set Role" from_port="example set output" to_op="Cross Validation" to_port="example set"/>
    <connect from_op="Cross Validation" from_port="model" to_port="result 2"/>
    <connect from_op="Cross Validation" from_port="example set" to_port="result 1"/>
    <connect from_op="Cross Validation" from_port="performance 1" to_port="result 3"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    <portSpacing port="sink_result 3" spacing="0"/>
    <portSpacing port="sink_result 4" spacing="0"/>
    </process>
    </operator>
    </process>

    I hope it helps,

     

    Regards,

     

    Lionel

Answers

  • Thomas_OttThomas_Ott RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 1,761 Unicorn

    @g_pawar please post your XML code too using the </> button. See the Read Before Posting instructions to your right.

  • g_pawarg_pawar Member Posts: 3 Learner III
    <?xml version="1.0" encoding="UTF-8"?><process version="8.1.000">
    <operator activated="true" class="read_csv" compatibility="8.1.000" expanded="true" height="68" name="Read CSV" width="90" x="380" y="391">
    <parameter key="column_separators" value=";"/>
    <parameter key="trim_lines" value="false"/>
    <parameter key="use_quotes" value="true"/>
    <parameter key="quotes_character" value="&quot;"/>
    <parameter key="escape_character" value="\"/>
    <parameter key="skip_comments" value="false"/>
    <parameter key="comment_characters" value="#"/>
    <parameter key="parse_numbers" value="true"/>
    <parameter key="decimal_character" value="."/>
    <parameter key="grouped_digits" value="false"/>
    <parameter key="grouping_character" value=","/>
    <parameter key="date_format" value=""/>
    <parameter key="first_row_as_names" value="true"/>
    <list key="annotations"/>
    <parameter key="time_zone" value="SYSTEM"/>
    <parameter key="locale" value="English (United States)"/>
    <parameter key="encoding" value="SYSTEM"/>
    <parameter key="read_all_values_as_polynominal" value="false"/>
    <list key="data_set_meta_data_information"/>
    <parameter key="read_not_matching_values_as_missings" value="true"/>
    <parameter key="datamanagement" value="double_array"/>
    <parameter key="data_management" value="auto"/>
    </operator>
    </process>

     Hi Thomas,

    Thanks for the reply. Please find the code.

    Cheers

    Gopal

  • g_pawarg_pawar Member Posts: 3 Learner III

    Thanks Lionel. Now its working.

    Regards,

    Gopal

Sign In or Register to comment.