Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.
predict unemployment rate using neural network
Hi,here is my xml proces:..i wanna know if im doing this right.so many things required as i click run.i want to achieve the best neural network model of my data,performance of my model,the division set, the training and testing performance,when can i say that i already have the best model that i can alreay use for prediction,what is wrong with my data?how do i make the lables?i dont understand it clearly.and more if u can suggest..my target variable is unemployment rate, the rest are independent variables.Can anyone please help me...thank you very much
<?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
<operator activated="true" class="filter_examples" compatibility="8.1.001" expanded="true" height="103" name="Filter Examples" width="90" x="179" y="136">
<parameter key="parameter_expression" value=""/>
<parameter key="condition_class" value="all"/>
<parameter key="invert_filter" value="false"/>
<list key="filters_list">
<parameter key="filters_entry_key" value="Population.is_not_missing."/>
<parameter key="filters_entry_key" value="Labor force.is_not_missing."/>
<parameter key="filters_entry_key" value="Inflation.is_not_missing."/>
<parameter key="filters_entry_key" value="GDP.is_not_missing."/>
<parameter key="filters_entry_key" value="GNI.is_not_missing."/>
<parameter key="filters_entry_key" value="GDI.is_not_missing."/>
<parameter key="filters_entry_key" value="FOREIGN TRADE.is_not_missing."/>
<parameter key="filters_entry_key" value="INDUSTRY.is_not_missing."/>
<parameter key="filters_entry_key" value="ELEM.is_not_missing."/>
<parameter key="filters_entry_key" value="SECOND.is_not_missing."/>
<parameter key="filters_entry_key" value="HIGHERED.is_not_missing."/>
</list>
<parameter key="filters_logic_and" value="true"/>
<parameter key="filters_check_metadata" value="true"/>
</operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
<operator activated="true" class="normalize" compatibility="8.1.001" expanded="true" height="103" name="Normalize" width="90" x="179" y="238">
<parameter key="return_preprocessing_model" value="false"/>
<parameter key="create_view" value="false"/>
<parameter key="attribute_filter_type" value="all"/>
<parameter key="attribute" value=""/>
<parameter key="attributes" value=""/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="numeric"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="real"/>
<parameter key="block_type" value="value_series"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_series_end"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
<parameter key="method" value="Z-transformation"/>
<parameter key="min" value="0.0"/>
<parameter key="max" value="1.0"/>
<parameter key="allow_negative_values" value="false"/>
</operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
<operator activated="true" class="set_role" compatibility="8.1.001" expanded="true" height="82" name="Set Role" width="90" x="179" y="340">
<parameter key="attribute_name" value="Unemployment"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles">
<parameter key="Population" value="regular"/>
<parameter key="Labor force" value="regular"/>
<parameter key="Inflation" value="regular"/>
<parameter key="GDP" value="regular"/>
<parameter key="GNI" value="regular"/>
<parameter key="GDI" value="regular"/>
<parameter key="FOREIGN TRADE" value="regular"/>
<parameter key="INDUSTRY" value="regular"/>
<parameter key="ELEM" value="regular"/>
<parameter key="SECOND" value="regular"/>
<parameter key="HIGHERED" value="regular"/>
</list>
</operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
<operator activated="true" class="replace_missing_values" compatibility="8.1.001" expanded="true" height="103" name="Replace Missing Values" width="90" x="313" y="238">
<parameter key="return_preprocessing_model" value="false"/>
<parameter key="create_view" value="false"/>
<parameter key="attribute_filter_type" value="all"/>
<parameter key="attribute" value=""/>
<parameter key="attributes" value=""/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="attribute_value"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="time"/>
<parameter key="block_type" value="attribute_block"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_matrix_row_start"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
<parameter key="default" value="average"/>
<list key="columns"/>
</operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
<operator activated="true" class="split_data" compatibility="8.1.001" expanded="true" height="103" name="Split Data" width="90" x="447" y="289">
<enumeration key="partitions">
<parameter key="ratio" value="0.9"/>
<parameter key="ratio" value="0.1"/>
</enumeration>
<parameter key="sampling_type" value="linear sampling"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
</operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
<operator activated="true" class="neural_net" compatibility="8.1.001" expanded="true" height="82" name="Neural Net" width="90" x="380" y="85">
<list key="hidden_layers"/>
<parameter key="training_cycles" value="500"/>
<parameter key="learning_rate" value="0.3"/>
<parameter key="momentum" value="0.2"/>
<parameter key="decay" value="false"/>
<parameter key="shuffle" value="true"/>
<parameter key="normalize" value="true"/>
<parameter key="error_epsilon" value="1.0E-5"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
</operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
<operator activated="true" class="apply_model" compatibility="8.1.001" expanded="true" height="82" name="Apply Model" width="90" x="514" y="85">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
<operator activated="true" class="performance" compatibility="8.1.001" expanded="true" height="82" name="Performance" width="90" x="782" y="85">
<parameter key="use_example_weights" value="true"/>
</operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
<operator activated="true" class="apply_model" compatibility="8.1.001" expanded="true" height="82" name="Apply Model (2)" width="90" x="648" y="289">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
<operator activated="true" class="performance" compatibility="8.1.001" expanded="true" height="82" name="Performance (2)" width="90" x="849" y="289">
<parameter key="use_example_weights" value="true"/>
</operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
<operator activated="true" class="retrieve" compatibility="8.1.001" expanded="true" height="68" name="Retrieve MYDATA - Copy (2)" width="90" x="313" y="493">
<parameter key="repository_entry" value="//NewLocalRepository/MYDATA - Copy"/>
</operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
<operator activated="true" class="filter_examples" compatibility="8.1.001" expanded="true" height="103" name="Filter Examples (2)" width="90" x="447" y="493">
<parameter key="parameter_expression" value=""/>
<parameter key="condition_class" value="all"/>
<parameter key="invert_filter" value="false"/>
<list key="filters_list">
<parameter key="filters_entry_key" value="Unemployment.is_missing."/>
</list>
<parameter key="filters_logic_and" value="true"/>
<parameter key="filters_check_metadata" value="true"/>
</operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
<operator activated="true" class="normalize" compatibility="8.1.001" expanded="true" height="103" name="Normalize (2)" width="90" x="581" y="493">
<parameter key="return_preprocessing_model" value="false"/>
<parameter key="create_view" value="false"/>
<parameter key="attribute_filter_type" value="all"/>
<parameter key="attribute" value=""/>
<parameter key="attributes" value=""/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="numeric"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="real"/>
<parameter key="block_type" value="value_series"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_series_end"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
<parameter key="method" value="Z-transformation"/>
<parameter key="min" value="0.0"/>
<parameter key="max" value="1.0"/>
<parameter key="allow_negative_values" value="false"/>
</operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
<operator activated="true" class="set_role" compatibility="8.1.001" expanded="true" height="82" name="Set Role (2)" width="90" x="715" y="493">
<parameter key="attribute_name" value="Unemployment"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles"/>
</operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
<operator activated="true" class="replace_missing_values" compatibility="8.1.001" expanded="true" height="103" name="Replace Missing Values (2)" width="90" x="782" y="595">
<parameter key="return_preprocessing_model" value="false"/>
<parameter key="create_view" value="false"/>
<parameter key="attribute_filter_type" value="all"/>
<parameter key="attribute" value=""/>
<parameter key="attributes" value=""/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="attribute_value"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="time"/>
<parameter key="block_type" value="attribute_block"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_matrix_row_start"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
<parameter key="default" value="average"/>
<list key="columns"/>
</operator>
</process>
<?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
<operator activated="true" class="concurrency:cross_validation" compatibility="8.1.001" expanded="true" height="145" name="Cross Validation" width="90" x="916" y="442">
<parameter key="split_on_batch_attribute" value="false"/>
<parameter key="leave_one_out" value="false"/>
<parameter key="number_of_folds" value="10"/>
<parameter key="sampling_type" value="automatic"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
<parameter key="enable_parallel_execution" value="true"/>
<process expanded="true">
<operator activated="true" class="neural_net" compatibility="8.1.001" expanded="true" height="82" name="Neural Net (2)" width="90" x="112" y="85">
<list key="hidden_layers"/>
<parameter key="training_cycles" value="500"/>
<parameter key="learning_rate" value="0.3"/>
<parameter key="momentum" value="0.2"/>
<parameter key="decay" value="false"/>
<parameter key="shuffle" value="true"/>
<parameter key="normalize" value="true"/>
<parameter key="error_epsilon" value="1.0E-5"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
</operator>
<connect from_port="training set" to_op="Neural Net (2)" to_port="training set"/>
<connect from_op="Neural Net (2)" from_port="model" to_port="model"/>
<connect from_op="Neural Net (2)" from_port="exampleSet" to_port="through 1"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
<portSpacing port="sink_through 2" spacing="0"/>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="8.1.001" expanded="true" height="82" name="Apply Model (3)" width="90" x="45" y="34">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<operator activated="true" class="performance_classification" compatibility="8.1.001" expanded="true" height="82" name="Performance from Cross Validation" width="90" x="246" y="34">
<parameter key="main_criterion" value="first"/>
<parameter key="accuracy" value="true"/>
<parameter key="classification_error" value="false"/>
<parameter key="kappa" value="false"/>
<parameter key="weighted_mean_recall" value="false"/>
<parameter key="weighted_mean_precision" value="false"/>
<parameter key="spearman_rho" value="false"/>
<parameter key="kendall_tau" value="false"/>
<parameter key="absolute_error" value="false"/>
<parameter key="relative_error" value="false"/>
<parameter key="relative_error_lenient" value="false"/>
<parameter key="relative_error_strict" value="false"/>
<parameter key="normalized_absolute_error" value="false"/>
<parameter key="root_mean_squared_error" value="false"/>
<parameter key="root_relative_squared_error" value="false"/>
<parameter key="squared_error" value="false"/>
<parameter key="correlation" value="false"/>
<parameter key="squared_correlation" value="false"/>
<parameter key="cross-entropy" value="false"/>
<parameter key="margin" value="false"/>
<parameter key="soft_margin_loss" value="false"/>
<parameter key="logistic_loss" value="false"/>
<parameter key="skip_undefined_labels" value="true"/>
<parameter key="use_example_weights" value="true"/>
<list key="class_weights"/>
</operator>
<connect from_port="model" to_op="Apply Model (3)" to_port="model"/>
<connect from_port="test set" to_op="Apply Model (3)" to_port="unlabelled data"/>
<connect from_op="Apply Model (3)" from_port="labelled data" to_op="Performance from Cross Validation" to_port="labelled data"/>
<connect from_op="Performance from Cross Validation" from_port="performance" to_port="performance 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="source_through 2" spacing="0"/>
<portSpacing port="sink_test set results" spacing="0"/>
<portSpacing port="sink_performance 1" spacing="0"/>
<portSpacing port="sink_performance 2" spacing="0"/>
</process>
</operator>
</process>
Tagged:
0
Answers
@doeyien your XML is corrupt. Please read this KB article on how to share it correctly. https://community.rapidminer.com/t5/RapidMiner-Studio-Knowledge-Base/How-can-I-share-processes-without-RapidMiner-Server/ta-p/37047
i hope this one is already ok..sorry i was ble to click 'accept as solution" earlier...
thanks again...
i'm sorry if i was able to click "accept solution" earlier,...i was trying to edit my post,..still my problems were mentioned at my post,...this is my xml process:,..i hope this one will work.
Can anyone please help me....
Okay, great. Your XML now loads, but it seems it's a bit unclear what your goal is for the data.
A couple of points, the data you provided looks a little like a time series, is that correct? Or is it to produce a prediction of the unemployment rate
Hi jEdward
thanks for paying attention on my post
Yes its a timeseries,..at the same time i have to make also predictions of unemployment rates ,..correct me if im wrong with my understading,.
Can you please suggest to me on what am i going to do with this?what about my process?am i doing the right thing?
its my first time using RM,
thanks in advance
regards,
yien
regard
heres another question,..am i going to include the variable YEAR in my data set?,..my data are from 1991-2014
@doeyien
Download the Time Series extension from the marketplace. It adds a number of sample processes using similar datasets to yours.
Have an explore of them to get a full understanding.
thanks for ur suggestion JEdward
I'll read and try the samples given
More power!