Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.

logistic regression operator and weights

Telcontar120Telcontar120 RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 1,635 Unicorn
edited December 2018 in Product Feedback - Resolved

The operator information for the base logistic regression learner indicates it does not accept weighted examples (see screenshot).  However, if you actually test this by running a model on weighted vs unweighted examples, it is very clear that the resulting model is different, so it does appear that weighting is affecting this operator.   See the example process here:

<?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="8.1.001" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="8.1.001" expanded="true" height="68" name="Retrieve Counterparty Risk Data" width="90" x="112" y="34">
<parameter key="repository_entry" value="//Samples/Templates/Credit Risk Modeling/Counterparty Risk Data"/>
</operator>
<operator activated="true" class="set_role" compatibility="8.1.001" expanded="true" height="82" name="Set Role" width="90" x="112" y="136">
<parameter key="attribute_name" value="Default"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="filter_examples" compatibility="8.1.001" expanded="true" height="103" name="Filter Examples" width="90" x="112" y="238">
<list key="filters_list">
<parameter key="filters_entry_key" value="Default.is_not_missing."/>
</list>
</operator>
<operator activated="true" class="multiply" compatibility="8.1.001" expanded="true" height="103" name="Multiply" width="90" x="246" y="34"/>
<operator activated="true" class="concurrency:cross_validation" compatibility="8.1.001" expanded="true" height="145" name="Validation" width="90" x="447" y="34">
<parameter key="sampling_type" value="stratified sampling"/>
<process expanded="true">
<operator activated="true" class="h2o:logistic_regression" compatibility="7.6.001" expanded="true" height="124" name="Logistic Regression" width="90" x="175" y="34"/>
<connect from_port="training set" to_op="Logistic Regression" to_port="training set"/>
<connect from_op="Logistic Regression" from_port="model" to_port="model"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
<description align="left" color="green" colored="true" height="80" resized="true" width="248" x="37" y="137">In the training phase, a model is built on the current training data set. (90 % of data by default, 10 times)</description>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="8.1.001" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance" compatibility="8.1.001" expanded="true" height="82" name="Performance" width="90" x="179" y="34"/>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="performance 1"/>
<connect from_op="Performance" from_port="example set" to_port="test set results"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_test set results" spacing="0"/>
<portSpacing port="sink_performance 1" spacing="0"/>
<portSpacing port="sink_performance 2" spacing="0"/>
<description align="left" color="blue" colored="true" height="103" resized="true" width="315" x="38" y="137">The model created in the Training step is applied to the current test set (10 %).&lt;br/&gt;The performance is evaluated and sent to the operator results.</description>
</process>
<description align="center" color="transparent" colored="false" width="126">A cross-validation evaluating a decision tree model.</description>
</operator>
<operator activated="true" class="generate_weight_stratification" compatibility="8.1.001" expanded="true" height="82" name="Generate Weight (Stratification)" width="90" x="313" y="238">
<parameter key="total_weight" value="424.0"/>
</operator>
<operator activated="true" class="concurrency:cross_validation" compatibility="8.1.001" expanded="true" height="145" name="Validation (2)" width="90" x="447" y="238">
<parameter key="sampling_type" value="stratified sampling"/>
<process expanded="true">
<operator activated="true" class="h2o:logistic_regression" compatibility="7.6.001" expanded="true" height="124" name="Logistic Regression (2)" width="90" x="175" y="34"/>
<connect from_port="training set" to_op="Logistic Regression (2)" to_port="training set"/>
<connect from_op="Logistic Regression (2)" from_port="model" to_port="model"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
<description align="left" color="green" colored="true" height="80" resized="false" width="248" x="37" y="137">In the training phase, a model is built on the current training data set. (90 % of data by default, 10 times)</description>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="8.1.001" expanded="true" height="82" name="Apply Model (2)" width="90" x="45" y="34">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance" compatibility="8.1.001" expanded="true" height="82" name="Performance (2)" width="90" x="179" y="34"/>
<connect from_port="model" to_op="Apply Model (2)" to_port="model"/>
<connect from_port="test set" to_op="Apply Model (2)" to_port="unlabelled data"/>
<connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
<connect from_op="Performance (2)" from_port="performance" to_port="performance 1"/>
<connect from_op="Performance (2)" from_port="example set" to_port="test set results"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_test set results" spacing="0"/>
<portSpacing port="sink_performance 1" spacing="0"/>
<portSpacing port="sink_performance 2" spacing="0"/>
<description align="left" color="blue" colored="true" height="103" resized="false" width="315" x="38" y="137">The model created in the Training step is applied to the current test set (10 %).&lt;br/&gt;The performance is evaluated and sent to the operator results.</description>
</process>
<description align="center" color="transparent" colored="false" width="126">A cross-validation evaluating a decision tree model.</description>
</operator>
<connect from_op="Retrieve Counterparty Risk Data" from_port="output" to_op="Set Role" to_port="example set input"/>
<connect from_op="Set Role" from_port="example set output" to_op="Filter Examples" to_port="example set input"/>
<connect from_op="Filter Examples" from_port="example set output" to_op="Multiply" to_port="input"/>
<connect from_op="Multiply" from_port="output 1" to_op="Validation" to_port="example set"/>
<connect from_op="Multiply" from_port="output 2" to_op="Generate Weight (Stratification)" to_port="example set input"/>
<connect from_op="Validation" from_port="model" to_port="result 1"/>
<connect from_op="Validation" from_port="test result set" to_port="result 2"/>
<connect from_op="Validation" from_port="performance 1" to_port="result 3"/>
<connect from_op="Generate Weight (Stratification)" from_port="example set output" to_op="Validation (2)" to_port="example set"/>
<connect from_op="Validation (2)" from_port="model" to_port="result 4"/>
<connect from_op="Validation (2)" from_port="test result set" to_port="result 5"/>
<connect from_op="Validation (2)" from_port="performance 1" to_port="result 6"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<portSpacing port="sink_result 4" spacing="0"/>
<portSpacing port="sink_result 5" spacing="0"/>
<portSpacing port="sink_result 6" spacing="0"/>
<portSpacing port="sink_result 7" spacing="0"/>
</process>
</operator>
</process>

Can the operator information be updated or clarified?  Thanks.

Brian T.
Lindon Ventures 
Data Science Consulting from Certified RapidMiner Experts
Tagged:
1
1 votes

Declined · Last Updated

Closing this idea - only one vote since Mar 2018. Please re-open if this is of interest.PROD-809

Comments

  • sgenzersgenzer Administrator, Moderator, Employee, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM Moderator Posts: 2,959 Community Manager

    Got it @Telcontar120. Pushing to dev team. Stay tuned.

  • sgenzersgenzer Administrator, Moderator, Employee, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM Moderator Posts: 2,959 Community Manager

    Confirmed as issue. Ticket created.

  • Telcontar120Telcontar120 RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 1,635 Unicorn
    edited May 2019
    Hi @sgenzer I am not entirely sure why this one is classified as a feature request.  It seems based on the initial analysis that the current operator is not working as specified (e.g., it says it does not accept weights but clearly it is doing something different when weights are present).  So wouldn't this one be more of a bug fix?  It could in theory be resolved in two very different ways:
    • actually make it ignore the weights (as it says it does, but currently doesn't)
    • or, actually use the weights, and update the operator capabilities description accordingly (note: this is clearly the better option!)
    But the way this is framed currently, I am not sure what we would be getting if we voted for this issue.  Can you clarify?
    Brian T.
    Lindon Ventures 
    Data Science Consulting from Certified RapidMiner Experts
Sign In or Register to comment.