Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.

"extract keywords from a collection of text files(.txt) and obtain the number of occurences."

RiyaJRiyaJ Member Posts: 2 Learner I
edited May 2019 in Help
Hello,
I am a newbie. 
I have a collection of text files from which I need to extract keywords and have the number of occurrences as an attribute in the final result.

Answers

  • kaymankayman Member Posts: 662 Unicorn
    The text mining extension is what you need. This allows you to split text into words and will return the occurrence of every word.

    below a very simplified example to get you started 

    <?xml version="1.0" encoding="UTF-8"?><process version="9.1.000">
      <context>
        <input/>
        <output/>
        <macros/>
      </context>
      <operator activated="true" class="process" compatibility="9.1.000" expanded="true" name="Process">
        <parameter key="logverbosity" value="init"/>
        <parameter key="random_seed" value="2001"/>
        <parameter key="send_mail" value="never"/>
        <parameter key="notification_email" value=""/>
        <parameter key="process_duration_for_mail" value="30"/>
        <parameter key="encoding" value="SYSTEM"/>
        <process expanded="true">
          <operator activated="true" class="operator_toolbox:create_exampleset" compatibility="1.7.000" expanded="true" height="68" name="Create ExampleSet" width="90" x="45" y="34">
            <parameter key="generator_type" value="comma_separated_text"/>
            <parameter key="number_of_examples" value="100"/>
            <parameter key="use_stepsize" value="false"/>
            <list key="function_descriptions"/>
            <parameter key="add_id_attribute" value="false"/>
            <list key="numeric_series_configuration"/>
            <list key="date_series_configuration"/>
            <list key="date_series_configuration (interval)"/>
            <parameter key="date_format" value="yyyy-MM-dd HH:mm:ss"/>
            <parameter key="input_csv_text" value="label&#10;word word nothing&#10;something bla bla Hello"/>
            <parameter key="column_separator" value=","/>
            <parameter key="parse_all_as_nominal" value="false"/>
            <parameter key="decimal_point_character" value="."/>
            <parameter key="trim_attribute_names" value="true"/>
          </operator>
          <operator activated="true" class="nominal_to_text" compatibility="9.1.000" expanded="true" height="82" name="Nominal to Text" width="90" x="179" y="34">
            <parameter key="attribute_filter_type" value="single"/>
            <parameter key="attribute" value="label"/>
            <parameter key="attributes" value=""/>
            <parameter key="use_except_expression" value="false"/>
            <parameter key="value_type" value="nominal"/>
            <parameter key="use_value_type_exception" value="false"/>
            <parameter key="except_value_type" value="file_path"/>
            <parameter key="block_type" value="single_value"/>
            <parameter key="use_block_type_exception" value="false"/>
            <parameter key="except_block_type" value="single_value"/>
            <parameter key="invert_selection" value="false"/>
            <parameter key="include_special_attributes" value="false"/>
          </operator>
          <operator activated="true" class="text:process_document_from_data" compatibility="8.1.000" expanded="true" height="82" name="Process Documents from Data" width="90" x="313" y="34">
            <parameter key="create_word_vector" value="false"/>
            <parameter key="vector_creation" value="TF-IDF"/>
            <parameter key="add_meta_information" value="false"/>
            <parameter key="keep_text" value="false"/>
            <parameter key="prune_method" value="none"/>
            <parameter key="prune_below_percent" value="3.0"/>
            <parameter key="prune_above_percent" value="30.0"/>
            <parameter key="prune_below_rank" value="0.05"/>
            <parameter key="prune_above_rank" value="0.95"/>
            <parameter key="datamanagement" value="double_sparse_array"/>
            <parameter key="data_management" value="auto"/>
            <parameter key="select_attributes_and_weights" value="false"/>
            <list key="specify_weights"/>
            <process expanded="true">
              <operator activated="true" class="text:transform_cases" compatibility="8.1.000" expanded="true" height="68" name="Transform Cases" width="90" x="45" y="34">
                <parameter key="transform_to" value="lower case"/>
              </operator>
              <operator activated="true" class="text:tokenize" compatibility="8.1.000" expanded="true" height="68" name="Tokenize" width="90" x="179" y="34">
                <parameter key="mode" value="linguistic tokens"/>
                <parameter key="characters" value=".:"/>
                <parameter key="language" value="English"/>
                <parameter key="max_token_length" value="3"/>
              </operator>
              <connect from_port="document" to_op="Transform Cases" to_port="document"/>
              <connect from_op="Transform Cases" from_port="document" to_op="Tokenize" to_port="document"/>
              <connect from_op="Tokenize" from_port="document" to_port="document 1"/>
              <portSpacing port="source_document" spacing="0"/>
              <portSpacing port="sink_document 1" spacing="0"/>
              <portSpacing port="sink_document 2" spacing="0"/>
            </process>
          </operator>
          <operator activated="true" class="text:wordlist_to_data" compatibility="8.1.000" expanded="true" height="82" name="WordList to Data" width="90" x="447" y="34"/>
          <connect from_op="Create ExampleSet" from_port="output" to_op="Nominal to Text" to_port="example set input"/>
          <connect from_op="Nominal to Text" from_port="example set output" to_op="Process Documents from Data" to_port="example set"/>
          <connect from_op="Process Documents from Data" from_port="word list" to_op="WordList to Data" to_port="word list"/>
          <connect from_op="WordList to Data" from_port="example set" to_port="result 1"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_result 1" spacing="0"/>
          <portSpacing port="sink_result 2" spacing="0"/>
        </process>
      </operator>
    </process>
    


  • RiyaJRiyaJ Member Posts: 2 Learner I
    edited February 2019
    Thank you for the response.
    Also, the main problem I am facing is reading the text from all the files in the collection at once and having an aggregated result.
    Please help further.
  • Telcontar120Telcontar120 RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 1,635 Unicorn
    Try Loop Collection and Append.
    Brian T.
    Lindon Ventures 
    Data Science Consulting from Certified RapidMiner Experts
Sign In or Register to comment.