Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.

Utilising GPU's on Amazon AWS instead of CPU

robinrobin Member Posts: 100 Guru
edited September 2019 in Help
In terms of the recommended set-up on AWS for RM it is the m4.xlarge with 4 CPU's and16 GB RAM. These are standard CPUs and I was wondering if anyone had used the G3, P2 or P3 instances available for having access to the GPU processing abilities on the platform?

Have you noticed any performance increase with GPU's? Is cost benefit analysis efficient in terms of the extra cost for the GPU vs the reduced model training time? How easy has it been to run in the cloud vs dedicated server?
Tagged:

Best Answers

  • hughesfleming68hughesfleming68 Member Posts: 323 Unicorn
    Solution Accepted
    I had good results with AWS. At some point my bills exceeded the cost to go dedicated so that was the reason for the switch.
  • sgenzersgenzer Administrator, Moderator, Employee, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM Moderator Posts: 2,959 Community Manager
    Solution Accepted
    nice conversation here. Yes when I was freelancing I had EC2 instances running RM Server for clients that I had on a Lambda CRON sched. It would spin up once/day, do its thing, and spin down. MUCH cheaper than leaving it on 24/7.

    Has anyone done an apples-for-apples benchmarking analysis using a variety of EC2 instance types with a fairly typical ML modeling task (not DL)? I sometimes feel like I'm just grabbing some config at random sometimes..

    Scott

Answers

  • hughesfleming68hughesfleming68 Member Posts: 323 Unicorn
    edited February 2019
    Only the Keras and DL4J extensions can make use of GPU's. Unless you are using those extensively there is no benefit to those instances. Even then there are some good reasons to stick to the CPU as the GPU can still be memory limited. I have done some testing of GPU's against high core count CPU's and the advantages are not always there. I have also compared AWS to dedicated and ended up going with dedicated but dedicated makes sense if you need to run applications 24/7. If it is just for Rapidminer or general ML tasks then AWS works very well.
  • robinrobin Member Posts: 100 Guru
    We go through spurts of running processes, with the server standing idle for days between the executions. In some sense it makes more sense to spin up an instance and use it when required and then turn it down again when everything is complete. We do run applications 24/7 for a couple of days during the month, as well as cron jobs but that would be handled by the EC2 instance while it is live. 
Sign In or Register to comment.