Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.

"How to carry out symbolic regression?"

mznmzn Member, University Professor Posts: 10 University Professor
edited May 2019 in Help
Is there any tutorials/examples on to how use RM to carry out symbolic regression?
Tagged:

Answers

  • IngoRMIngoRM Employee, RapidMiner Certified Analyst, RapidMiner Certified Expert, Community Manager, RMResearcher, Member, University Professor Posts: 1,751 RM Founder
    Hi @mzn
    Traditional approaches for symbolic regression often suffered from a phenomenon called feature bloat which is why they are hardly used any longer today.  They have been replaced by a combination of linear regression (for assigning coefficients) with automatic feature generation approaches.  In RapidMiner you would use a combination of the operators Generalized Linear Models with Automatic Feature Engineering for this.  The multi-objective optimization approach keeps the feature bloat in check and therefore reduces the risk for overfitting.  I have attached a small demo process below.
    I gave a presentation in London last week which also covered this to some degree.  For this discussion I used similar data to the one in the example process mentioned above.  I attached a couple of relevant slides showing a simple linear regression model, a decision tree model, a GBT model, and a model consisting of linear regression combined with automatic feature engineering.  Like in symbolic regression, the resulting formula can be easily seen (in this case it was prediction(y) = 10,550 * |x| + 7,565 * x * |x|2 + 705 / |x| + 17,394.
    Here are some relevant links:
    And finally the little demo process below.
    Hope this helps,
    Ingo
    <?xml version="1.0" encoding="UTF-8"?><process version="9.2.000"><br>&nbsp; <context><br>&nbsp;&nbsp;&nbsp; <input/><br>&nbsp;&nbsp;&nbsp; <output/><br>&nbsp;&nbsp;&nbsp; <macros/><br>&nbsp; </context><br>&nbsp; <operator activated="true" class="process" compatibility="9.2.000" expanded="true" name="Process"><br>&nbsp;&nbsp;&nbsp; <parameter key="logverbosity" value="init"/><br>&nbsp;&nbsp;&nbsp; <parameter key="random_seed" value="2001"/><br>&nbsp;&nbsp;&nbsp; <parameter key="send_mail" value="never"/><br>&nbsp;&nbsp;&nbsp; <parameter key="notification_email" value=""/><br>&nbsp;&nbsp;&nbsp; <parameter key="process_duration_for_mail" value="30"/><br>&nbsp;&nbsp;&nbsp; <parameter key="encoding" value="UTF-8"/><br>&nbsp;&nbsp;&nbsp; <process expanded="true"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="generate_data" compatibility="9.2.000" expanded="true" height="68" name="Generate Data" width="90" x="45" y="289"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="target_function" value="one variable non linear"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="number_examples" value="3000"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="number_of_attributes" value="1"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="attributes_lower_bound" value="-25.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="attributes_upper_bound" value="25.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="gaussian_standard_deviation" value="10.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="largest_radius" value="10.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_local_random_seed" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="local_random_seed" value="1977"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="datamanagement" value="double_array"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="data_management" value="auto"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="add_noise" compatibility="9.2.000" expanded="true" height="103" name="Add Noise" width="90" x="179" y="289"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="return_preprocessing_model" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="create_view" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="attribute_filter_type" value="all"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="attribute" value=""/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="attributes" value=""/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_except_expression" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="value_type" value="attribute_value"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_value_type_exception" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="except_value_type" value="time"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="block_type" value="attribute_block"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_block_type_exception" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="except_block_type" value="value_matrix_row_start"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="invert_selection" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="include_special_attributes" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="random_attributes" value="0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="label_noise" value="0.01"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="default_attribute_noise" value="0.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <list key="noise"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="offset" value="0.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="linear_factor" value="1.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_local_random_seed" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="local_random_seed" value="1992"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="split_data" compatibility="9.2.000" expanded="true" height="103" name="Split Data (2)" width="90" x="313" y="289"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <enumeration key="partitions"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="ratio" value="0.7"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="ratio" value="0.3"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </enumeration><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="sampling_type" value="automatic"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_local_random_seed" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="local_random_seed" value="1992"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="generate_id" compatibility="9.2.000" expanded="true" height="82" name="Generate ID" width="90" x="581" y="442"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="create_nominal_ids" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="offset" value="0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="multiply" compatibility="9.2.000" expanded="true" height="103" name="Multiply" width="90" x="447" y="187"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="model_simulator:automatic_feature_engineering" compatibility="9.2.000" expanded="true" height="103" name="Automatic Feature Engineering" width="90" x="581" y="34"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="mode" value="feature selection and generation"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="balance for accuracy" value="1.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="show progress dialog" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_local_random_seed" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="local_random_seed" value="1992"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use optimization heuristics" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="maximum generations" value="100"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="population size" value="30"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use multi-starts" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="number of multi-starts" value="5"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="generations until multi-start" value="10"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use time limit" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="time limit in seconds" value="60"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use subset for generation" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="maximum function complexity" value="6"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_plus" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_diff" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_mult" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_div" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="reciprocal_value" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_square_roots" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_exp" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_log" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_absolute_values" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_sgn" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_min" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_max" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <process expanded="true"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="split_data" compatibility="9.2.000" expanded="true" height="103" name="Split Data" width="90" x="45" y="136"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <enumeration key="partitions"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="ratio" value="0.7"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="ratio" value="0.3"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </enumeration><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="sampling_type" value="automatic"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_local_random_seed" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="local_random_seed" value="1992"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="h2o:generalized_linear_model" compatibility="9.2.000" expanded="true" height="124" name="Generalized Linear Model" width="90" x="179" y="34"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="family" value="AUTO"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="link" value="family_default"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="solver" value="AUTO"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="reproducible" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="maximum_number_of_threads" value="4"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_regularization" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="lambda" value="1.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="lambda_search" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="number_of_lambdas" value="0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="lambda_min_ratio" value="0.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="early_stopping" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="stopping_rounds" value="3"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="stopping_tolerance" value="0.001"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="alpha" value="1.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="standardize" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="non-negative_coefficients" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="add_intercept" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="compute_p-values" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="remove_collinear_columns" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="missing_values_handling" value="MeanImputation"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="max_iterations" value="0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="specify_beta_constraints" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <list key="beta_constraints"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="max_runtime_seconds" value="0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <list key="expert_parameters"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="apply_model" compatibility="9.2.000" expanded="true" height="82" name="Apply Model" width="90" x="380" y="136"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <list key="application_parameters"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="create_view" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="performance_regression" compatibility="9.2.000" expanded="true" height="82" name="Performance" width="90" x="514" y="136"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="main_criterion" value="root_mean_squared_error"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="root_mean_squared_error" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="absolute_error" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="relative_error" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="relative_error_lenient" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="relative_error_strict" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="normalized_absolute_error" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="root_relative_squared_error" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="squared_error" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="correlation" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="squared_correlation" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="prediction_average" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="spearman_rho" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="kendall_tau" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="skip_undefined_labels" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_example_weights" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_port="example set source" to_op="Split Data" to_port="example set"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Split Data" from_port="partition 1" to_op="Generalized Linear Model" to_port="training set"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Split Data" from_port="partition 2" to_op="Apply Model" to_port="unlabelled data"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Generalized Linear Model" from_port="model" to_op="Apply Model" to_port="model"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Performance" from_port="performance" to_port="performance sink"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <portSpacing port="source_example set source" spacing="0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <portSpacing port="sink_performance sink" spacing="0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </process><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="multiply" compatibility="9.2.000" expanded="true" height="103" name="Multiply (2)" width="90" x="715" y="34"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="model_simulator:apply_feature_set" compatibility="9.2.000" expanded="true" height="82" name="Apply Feature Set" width="90" x="849" y="187"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="handle missings" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="keep originals" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="originals special role" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="h2o:generalized_linear_model" compatibility="9.2.000" expanded="true" height="124" name="Generalized Linear Model (2)" width="90" x="983" y="187"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="family" value="AUTO"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="link" value="family_default"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="solver" value="AUTO"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="reproducible" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="maximum_number_of_threads" value="4"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_regularization" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="lambda_search" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="number_of_lambdas" value="0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="lambda_min_ratio" value="0.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="early_stopping" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="stopping_rounds" value="3"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="stopping_tolerance" value="0.001"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="standardize" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="non-negative_coefficients" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="add_intercept" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="compute_p-values" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="remove_collinear_columns" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="missing_values_handling" value="MeanImputation"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="max_iterations" value="0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="specify_beta_constraints" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <list key="beta_constraints"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="max_runtime_seconds" value="0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <list key="expert_parameters"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="multiply" compatibility="9.2.000" expanded="true" height="103" name="Multiply (3)" width="90" x="715" y="442"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="model_simulator:apply_feature_set" compatibility="9.2.000" expanded="true" height="82" name="Apply Feature Set (2)" width="90" x="849" y="340"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="handle missings" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="keep originals" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="originals special role" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="apply_model" compatibility="9.2.000" expanded="true" height="82" name="Apply Model (2)" width="90" x="1117" y="340"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <list key="application_parameters"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="create_view" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="concurrency:join" compatibility="9.2.000" expanded="true" height="82" name="Join" width="90" x="1251" y="442"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="remove_double_attributes" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="join_type" value="inner"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_id_attribute_as_key" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <list key="key_attributes"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="keep_both_join_attributes" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Generate Data" from_port="output" to_op="Add Noise" to_port="example set input"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Add Noise" from_port="example set output" to_op="Split Data (2)" to_port="example set"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Split Data (2)" from_port="partition 1" to_op="Multiply" to_port="input"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Split Data (2)" from_port="partition 2" to_op="Generate ID" to_port="example set input"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Generate ID" from_port="example set output" to_op="Multiply (3)" to_port="input"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Multiply" from_port="output 1" to_op="Automatic Feature Engineering" to_port="example set in"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Multiply" from_port="output 2" to_op="Apply Feature Set" to_port="example set"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Automatic Feature Engineering" from_port="feature set" to_op="Multiply (2)" to_port="input"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Multiply (2)" from_port="output 1" to_op="Apply Feature Set" to_port="feature set"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Multiply (2)" from_port="output 2" to_op="Apply Feature Set (2)" to_port="feature set"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Apply Feature Set" from_port="example set" to_op="Generalized Linear Model (2)" to_port="training set"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Generalized Linear Model (2)" from_port="model" to_op="Apply Model (2)" to_port="model"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Multiply (3)" from_port="output 1" to_op="Apply Feature Set (2)" to_port="example set"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Multiply (3)" from_port="output 2" to_op="Join" to_port="right"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Apply Feature Set (2)" from_port="example set" to_op="Apply Model (2)" to_port="unlabelled data"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Join" to_port="left"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Apply Model (2)" from_port="model" to_port="result 1"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Join" from_port="join" to_port="result 2"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <portSpacing port="source_input 1" spacing="0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <portSpacing port="sink_result 1" spacing="0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <portSpacing port="sink_result 2" spacing="315"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <portSpacing port="sink_result 3" spacing="0"/><br>&nbsp;&nbsp;&nbsp; </process><br>&nbsp; </operator><br></process><br>
  • mznmzn Member, University Professor Posts: 10 University Professor
    Thanks a lot Ingo. I am interested in the following:
    1. I have a set of data points (x1, x2, x3...) with a corresponding output (y1)
    2. I need to derive a relation (in the form of an equation) that links x1, x2, x3 to y1 such that I can predict the output for any inputs variables.
    3. Can I do this in RM? If yes, is there a simple example I/my graduate students can follow?
    4. Your youtube videos are very helpful! Thanks!
  • IngoRMIngoRM Employee, RapidMiner Certified Analyst, RapidMiner Certified Expert, Community Manager, RMResearcher, Member, University Professor Posts: 1,751 RM Founder
    Hi @mzn
    Thanks for your kind words :smile: 
    The process above is a cool example, but maybe not simple enough.  Pretty much machine learning models in RapidMiner can be used for this task, but maybe I would go with a simple linear regression first.  The process below shows a simple example for this.  If you use the Model Simulator like I do in this example, the students can even play around with some of the inputs and see how the model reacts.  You can see the Simulator in this video (around minute 6:40): https://academy.rapidminer.com/learn/video/auto-model-classification
    More helpful videos on this can be found here: https://academy.rapidminer.com/catalog?label=search&value=regression
    Hope this helps,
    Ingo
    <?xml version="1.0" encoding="UTF-8"?><process version="9.2.000"><br>&nbsp; <context><br>&nbsp;&nbsp;&nbsp; <input/><br>&nbsp;&nbsp;&nbsp; <output/><br>&nbsp;&nbsp;&nbsp; <macros/><br>&nbsp; </context><br>&nbsp; <operator activated="true" class="process" compatibility="9.2.000" expanded="true" name="Process"><br>&nbsp;&nbsp;&nbsp; <parameter key="logverbosity" value="init"/><br>&nbsp;&nbsp;&nbsp; <parameter key="random_seed" value="2001"/><br>&nbsp;&nbsp;&nbsp; <parameter key="send_mail" value="never"/><br>&nbsp;&nbsp;&nbsp; <parameter key="notification_email" value=""/><br>&nbsp;&nbsp;&nbsp; <parameter key="process_duration_for_mail" value="30"/><br>&nbsp;&nbsp;&nbsp; <parameter key="encoding" value="UTF-8"/><br>&nbsp;&nbsp;&nbsp; <process expanded="true"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="generate_data" compatibility="9.2.000" expanded="true" height="68" name="Generate Data" width="90" x="45" y="34"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="target_function" value="sum"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="number_examples" value="1000"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="number_of_attributes" value="5"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="attributes_lower_bound" value="-10.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="attributes_upper_bound" value="10.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="gaussian_standard_deviation" value="10.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="largest_radius" value="10.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_local_random_seed" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="local_random_seed" value="1992"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="datamanagement" value="double_array"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="data_management" value="auto"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="add_noise" compatibility="9.2.000" expanded="true" height="103" name="Add Noise" width="90" x="179" y="34"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="return_preprocessing_model" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="create_view" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="attribute_filter_type" value="all"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="attribute" value=""/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="attributes" value=""/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_except_expression" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="value_type" value="attribute_value"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_value_type_exception" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="except_value_type" value="time"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="block_type" value="attribute_block"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_block_type_exception" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="except_block_type" value="value_matrix_row_start"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="invert_selection" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="include_special_attributes" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="random_attributes" value="5"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="label_noise" value="0.05"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="default_attribute_noise" value="0.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <list key="noise"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="offset" value="0.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="linear_factor" value="1.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_local_random_seed" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="local_random_seed" value="1992"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="split_data" compatibility="9.2.000" expanded="true" height="103" name="Split Data" width="90" x="313" y="187"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <enumeration key="partitions"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="ratio" value="0.7"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="ratio" value="0.3"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </enumeration><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="sampling_type" value="automatic"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_local_random_seed" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="local_random_seed" value="1992"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="linear_regression" compatibility="9.2.000" expanded="true" height="103" name="Linear Regression" width="90" x="447" y="34"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="feature_selection" value="none"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="alpha" value="0.05"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="max_iterations" value="10"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="forward_alpha" value="0.05"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="backward_alpha" value="0.05"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="eliminate_colinear_features" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="min_tolerance" value="0.05"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_bias" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="ridge" value="1.0E-8"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="apply_model" compatibility="9.2.000" expanded="true" height="82" name="Apply Model" width="90" x="581" y="238"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <list key="application_parameters"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="create_view" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="model_simulator:model_simulator" compatibility="9.2.000" expanded="true" height="103" name="Model Simulator" width="90" x="782" y="136"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Generate Data" from_port="output" to_op="Add Noise" to_port="example set input"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Add Noise" from_port="example set output" to_op="Split Data" to_port="example set"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Split Data" from_port="partition 1" to_op="Linear Regression" to_port="training set"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Split Data" from_port="partition 2" to_op="Apply Model" to_port="unlabelled data"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Linear Regression" from_port="model" to_op="Apply Model" to_port="model"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Linear Regression" from_port="exampleSet" to_op="Model Simulator" to_port="training data"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Apply Model" from_port="labelled data" to_op="Model Simulator" to_port="test data"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Apply Model" from_port="model" to_op="Model Simulator" to_port="model"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Model Simulator" from_port="simulator output" to_port="result 1"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Model Simulator" from_port="model output" to_port="result 2"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <portSpacing port="source_input 1" spacing="0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <portSpacing port="sink_result 1" spacing="105"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <portSpacing port="sink_result 2" spacing="0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <portSpacing port="sink_result 3" spacing="0"/><br>&nbsp;&nbsp;&nbsp; </process><br>&nbsp; </operator><br></process>

Sign In or Register to comment.