Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.
"How to carry out symbolic regression?"
Is there any tutorials/examples on to how use RM to carry out symbolic regression?
Tagged:
0
Answers
Ingo
1. I have a set of data points (x1, x2, x3...) with a corresponding output (y1)
2. I need to derive a relation (in the form of an equation) that links x1, x2, x3 to y1 such that I can predict the output for any inputs variables.
3. Can I do this in RM? If yes, is there a simple example I/my graduate students can follow?
4. Your youtube videos are very helpful! Thanks!
Ingo
<?xml version="1.0" encoding="UTF-8"?><process version="9.2.000"><br> <context><br> <input/><br> <output/><br> <macros/><br> </context><br> <operator activated="true" class="process" compatibility="9.2.000" expanded="true" name="Process"><br> <parameter key="logverbosity" value="init"/><br> <parameter key="random_seed" value="2001"/><br> <parameter key="send_mail" value="never"/><br> <parameter key="notification_email" value=""/><br> <parameter key="process_duration_for_mail" value="30"/><br> <parameter key="encoding" value="UTF-8"/><br> <process expanded="true"><br> <operator activated="true" class="generate_data" compatibility="9.2.000" expanded="true" height="68" name="Generate Data" width="90" x="45" y="34"><br> <parameter key="target_function" value="sum"/><br> <parameter key="number_examples" value="1000"/><br> <parameter key="number_of_attributes" value="5"/><br> <parameter key="attributes_lower_bound" value="-10.0"/><br> <parameter key="attributes_upper_bound" value="10.0"/><br> <parameter key="gaussian_standard_deviation" value="10.0"/><br> <parameter key="largest_radius" value="10.0"/><br> <parameter key="use_local_random_seed" value="false"/><br> <parameter key="local_random_seed" value="1992"/><br> <parameter key="datamanagement" value="double_array"/><br> <parameter key="data_management" value="auto"/><br> </operator><br> <operator activated="true" class="add_noise" compatibility="9.2.000" expanded="true" height="103" name="Add Noise" width="90" x="179" y="34"><br> <parameter key="return_preprocessing_model" value="false"/><br> <parameter key="create_view" value="false"/><br> <parameter key="attribute_filter_type" value="all"/><br> <parameter key="attribute" value=""/><br> <parameter key="attributes" value=""/><br> <parameter key="use_except_expression" value="false"/><br> <parameter key="value_type" value="attribute_value"/><br> <parameter key="use_value_type_exception" value="false"/><br> <parameter key="except_value_type" value="time"/><br> <parameter key="block_type" value="attribute_block"/><br> <parameter key="use_block_type_exception" value="false"/><br> <parameter key="except_block_type" value="value_matrix_row_start"/><br> <parameter key="invert_selection" value="false"/><br> <parameter key="include_special_attributes" value="false"/><br> <parameter key="random_attributes" value="5"/><br> <parameter key="label_noise" value="0.05"/><br> <parameter key="default_attribute_noise" value="0.0"/><br> <list key="noise"/><br> <parameter key="offset" value="0.0"/><br> <parameter key="linear_factor" value="1.0"/><br> <parameter key="use_local_random_seed" value="false"/><br> <parameter key="local_random_seed" value="1992"/><br> </operator><br> <operator activated="true" class="split_data" compatibility="9.2.000" expanded="true" height="103" name="Split Data" width="90" x="313" y="187"><br> <enumeration key="partitions"><br> <parameter key="ratio" value="0.7"/><br> <parameter key="ratio" value="0.3"/><br> </enumeration><br> <parameter key="sampling_type" value="automatic"/><br> <parameter key="use_local_random_seed" value="false"/><br> <parameter key="local_random_seed" value="1992"/><br> </operator><br> <operator activated="true" class="linear_regression" compatibility="9.2.000" expanded="true" height="103" name="Linear Regression" width="90" x="447" y="34"><br> <parameter key="feature_selection" value="none"/><br> <parameter key="alpha" value="0.05"/><br> <parameter key="max_iterations" value="10"/><br> <parameter key="forward_alpha" value="0.05"/><br> <parameter key="backward_alpha" value="0.05"/><br> <parameter key="eliminate_colinear_features" value="true"/><br> <parameter key="min_tolerance" value="0.05"/><br> <parameter key="use_bias" value="true"/><br> <parameter key="ridge" value="1.0E-8"/><br> </operator><br> <operator activated="true" class="apply_model" compatibility="9.2.000" expanded="true" height="82" name="Apply Model" width="90" x="581" y="238"><br> <list key="application_parameters"/><br> <parameter key="create_view" value="false"/><br> </operator><br> <operator activated="true" class="model_simulator:model_simulator" compatibility="9.2.000" expanded="true" height="103" name="Model Simulator" width="90" x="782" y="136"/><br> <connect from_op="Generate Data" from_port="output" to_op="Add Noise" to_port="example set input"/><br> <connect from_op="Add Noise" from_port="example set output" to_op="Split Data" to_port="example set"/><br> <connect from_op="Split Data" from_port="partition 1" to_op="Linear Regression" to_port="training set"/><br> <connect from_op="Split Data" from_port="partition 2" to_op="Apply Model" to_port="unlabelled data"/><br> <connect from_op="Linear Regression" from_port="model" to_op="Apply Model" to_port="model"/><br> <connect from_op="Linear Regression" from_port="exampleSet" to_op="Model Simulator" to_port="training data"/><br> <connect from_op="Apply Model" from_port="labelled data" to_op="Model Simulator" to_port="test data"/><br> <connect from_op="Apply Model" from_port="model" to_op="Model Simulator" to_port="model"/><br> <connect from_op="Model Simulator" from_port="simulator output" to_port="result 1"/><br> <connect from_op="Model Simulator" from_port="model output" to_port="result 2"/><br> <portSpacing port="source_input 1" spacing="0"/><br> <portSpacing port="sink_result 1" spacing="105"/><br> <portSpacing port="sink_result 2" spacing="0"/><br> <portSpacing port="sink_result 3" spacing="0"/><br> </process><br> </operator><br></process>