Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.
Merging Two Tables and Calculating Difference of Two Separate Columns
I have generated PERFORMANCE of two datasets. Now I want to merge those two generated tables and calculate difference between accuracy,precision and recall. How to do that?
Tagged:
0
Answers
Please see below sample XML code by clicking show, I used the same titanic dataset to train and test two models using rapidminer, then I converted the performances of both models into data using performance to data operator. I joined two performances and applied generate attribute operator to find a difference in performance. The new attribute "Difference in performance" will have your required result. You can run the below XML code by going to View --> Show Panel --> XML. Here you should paste this code in XML window and press green tick mark on the window which will show you the process.
<?xml version="1.0" encoding="UTF-8"?><process version="9.2.001">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="9.2.001" expanded="true" name="Process">
<parameter key="logverbosity" value="init"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="SYSTEM"/>
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="9.2.001" expanded="true" height="68" name="Retrieve Titanic Training" width="90" x="45" y="85">
<parameter key="repository_entry" value="//Samples/data/Titanic Training"/>
</operator>
<operator activated="true" class="multiply" compatibility="9.2.001" expanded="true" height="103" name="Multiply" width="90" x="179" y="85"/>
<operator activated="true" class="concurrency:cross_validation" compatibility="9.2.001" expanded="true" height="145" name="Cross Validation (2)" width="90" x="313" y="289">
<parameter key="split_on_batch_attribute" value="false"/>
<parameter key="leave_one_out" value="false"/>
<parameter key="number_of_folds" value="10"/>
<parameter key="sampling_type" value="automatic"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
<parameter key="enable_parallel_execution" value="true"/>
<process expanded="true">
<operator activated="true" class="h2o:logistic_regression" compatibility="9.2.000" expanded="true" height="124" name="Logistic Regression" width="90" x="112" y="34">
<parameter key="solver" value="AUTO"/>
<parameter key="reproducible" value="false"/>
<parameter key="maximum_number_of_threads" value="4"/>
<parameter key="use_regularization" value="false"/>
<parameter key="lambda_search" value="false"/>
<parameter key="number_of_lambdas" value="0"/>
<parameter key="lambda_min_ratio" value="0.0"/>
<parameter key="early_stopping" value="true"/>
<parameter key="stopping_rounds" value="3"/>
<parameter key="stopping_tolerance" value="0.001"/>
<parameter key="standardize" value="true"/>
<parameter key="non-negative_coefficients" value="false"/>
<parameter key="add_intercept" value="true"/>
<parameter key="compute_p-values" value="true"/>
<parameter key="remove_collinear_columns" value="true"/>
<parameter key="missing_values_handling" value="MeanImputation"/>
<parameter key="max_iterations" value="0"/>
<parameter key="max_runtime_seconds" value="0"/>
</operator>
<connect from_port="training set" to_op="Logistic Regression" to_port="training set"/>
<connect from_op="Logistic Regression" from_port="model" to_port="model"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="9.2.001" expanded="true" height="82" name="Apply Model (2)" width="90" x="45" y="34">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<operator activated="true" class="performance" compatibility="9.2.001" expanded="true" height="82" name="Performance (2)" width="90" x="179" y="85">
<parameter key="use_example_weights" value="true"/>
</operator>
<connect from_port="model" to_op="Apply Model (2)" to_port="model"/>
<connect from_port="test set" to_op="Apply Model (2)" to_port="unlabelled data"/>
<connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
<connect from_op="Performance (2)" from_port="performance" to_port="performance 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_test set results" spacing="0"/>
<portSpacing port="sink_performance 1" spacing="0"/>
<portSpacing port="sink_performance 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="performance_to_data" compatibility="9.2.001" expanded="true" height="82" name="Performance to Data (2)" width="90" x="447" y="340"/>
<operator activated="true" class="concurrency:cross_validation" compatibility="9.2.001" expanded="true" height="145" name="Cross Validation" width="90" x="313" y="85">
<parameter key="split_on_batch_attribute" value="false"/>
<parameter key="leave_one_out" value="false"/>
<parameter key="number_of_folds" value="10"/>
<parameter key="sampling_type" value="automatic"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
<parameter key="enable_parallel_execution" value="true"/>
<process expanded="true">
<operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.2.001" expanded="true" height="103" name="Decision Tree" width="90" x="112" y="34">
<parameter key="criterion" value="gain_ratio"/>
<parameter key="maximal_depth" value="10"/>
<parameter key="apply_pruning" value="true"/>
<parameter key="confidence" value="0.1"/>
<parameter key="apply_prepruning" value="true"/>
<parameter key="minimal_gain" value="0.01"/>
<parameter key="minimal_leaf_size" value="2"/>
<parameter key="minimal_size_for_split" value="4"/>
<parameter key="number_of_prepruning_alternatives" value="3"/>
</operator>
<connect from_port="training set" to_op="Decision Tree" to_port="training set"/>
<connect from_op="Decision Tree" from_port="model" to_port="model"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="9.2.001" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<operator activated="true" class="performance" compatibility="9.2.001" expanded="true" height="82" name="Performance" width="90" x="179" y="85">
<parameter key="use_example_weights" value="true"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="performance 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_test set results" spacing="0"/>
<portSpacing port="sink_performance 1" spacing="0"/>
<portSpacing port="sink_performance 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="performance_to_data" compatibility="9.2.001" expanded="true" height="82" name="Performance to Data" width="90" x="447" y="187"/>
<operator activated="true" class="concurrency:join" compatibility="9.2.001" expanded="true" height="82" name="Join" width="90" x="581" y="289">
<parameter key="remove_double_attributes" value="false"/>
<parameter key="join_type" value="outer"/>
<parameter key="use_id_attribute_as_key" value="false"/>
<list key="key_attributes">
<parameter key="Criterion" value="Criterion"/>
</list>
<parameter key="keep_both_join_attributes" value="false"/>
</operator>
<operator activated="true" class="generate_attributes" compatibility="9.2.001" expanded="true" height="82" name="Generate Attributes" width="90" x="648" y="136">
<list key="function_descriptions">
<parameter key="Difference in Performance" value="Value-Value_from_ES2"/>
</list>
<parameter key="keep_all" value="true"/>
</operator>
<connect from_op="Retrieve Titanic Training" from_port="output" to_op="Multiply" to_port="input"/>
<connect from_op="Multiply" from_port="output 1" to_op="Cross Validation" to_port="example set"/>
<connect from_op="Multiply" from_port="output 2" to_op="Cross Validation (2)" to_port="example set"/>
<connect from_op="Cross Validation (2)" from_port="performance 1" to_op="Performance to Data (2)" to_port="performance vector"/>
<connect from_op="Performance to Data (2)" from_port="example set" to_op="Join" to_port="right"/>
<connect from_op="Cross Validation" from_port="performance 1" to_op="Performance to Data" to_port="performance vector"/>
<connect from_op="Performance to Data" from_port="example set" to_op="Join" to_port="left"/>
<connect from_op="Join" from_port="join" to_op="Generate Attributes" to_port="example set input"/>
<connect from_op="Generate Attributes" from_port="example set output" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>
Result: Values from two performances and final difference between them.
Hope this helps.
Varun
https://www.varunmandalapu.com/
Be Safe. Follow precautions and Maintain Social Distancing