🎉 🎉 RAPIDMINER 9.10 IS OUT!!! 🎉🎉

Download the latest version helping analytics teams accelerate time-to-value for streaming and IIOT use cases.

CLICK HERE TO DOWNLOAD

Classification methods results through Testing and validation

moohrashmoohrash Member Posts: 1 Learner I
edited October 2019 in Help
Hi 
I wonder how I can get the accuracy, recall, precision, f-measure of the classifier from testing and validation?. I have multi class classification. I used cross validation. I got the final accurcy, recall , precision of the model, but I want to know how was model doing in training and testing.
Regards 
Muhanad
Tagged:

Answers

  • lionelderkrikorlionelderkrikor Moderator, RapidMiner Certified Analyst, Member Posts: 1,186   Unicorn
    Hi @moohrash,

    To have a general idea of the training performance, you can put Apply Model and Performance operators
    in the training part of the Cross Validation operator and then connect the PER output port to the THR port.
    Here a such process : 

     
    <?xml version="1.0" encoding="UTF-8"?><process version="9.2.001">
      <context>
        <input/>
        <output/>
        <macros/>
      </context>
      <operator activated="true" class="process" compatibility="9.2.001" expanded="true" name="Process">
        <parameter key="logverbosity" value="init"/>
        <parameter key="random_seed" value="2001"/>
        <parameter key="send_mail" value="never"/>
        <parameter key="notification_email" value=""/>
        <parameter key="process_duration_for_mail" value="30"/>
        <parameter key="encoding" value="SYSTEM"/>
        <process expanded="true">
          <operator activated="true" class="retrieve" compatibility="9.2.001" expanded="true" height="68" name="Retrieve Iris" width="90" x="112" y="85">
            <parameter key="repository_entry" value="//Samples/data/Iris"/>
          </operator>
          <operator activated="true" class="concurrency:cross_validation" compatibility="9.2.001" expanded="true" height="166" name="Cross Validation" width="90" x="313" y="85">
            <parameter key="split_on_batch_attribute" value="false"/>
            <parameter key="leave_one_out" value="false"/>
            <parameter key="number_of_folds" value="10"/>
            <parameter key="sampling_type" value="automatic"/>
            <parameter key="use_local_random_seed" value="false"/>
            <parameter key="local_random_seed" value="1992"/>
            <parameter key="enable_parallel_execution" value="true"/>
            <process expanded="true">
              <operator activated="true" class="multiply" compatibility="9.2.001" expanded="true" height="103" name="Multiply (2)" width="90" x="44" y="34"/>
              <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.2.001" expanded="true" height="103" name="Decision Tree" width="90" x="179" y="34">
                <parameter key="criterion" value="gain_ratio"/>
                <parameter key="maximal_depth" value="10"/>
                <parameter key="apply_pruning" value="true"/>
                <parameter key="confidence" value="0.1"/>
                <parameter key="apply_prepruning" value="true"/>
                <parameter key="minimal_gain" value="0.01"/>
                <parameter key="minimal_leaf_size" value="2"/>
                <parameter key="minimal_size_for_split" value="4"/>
                <parameter key="number_of_prepruning_alternatives" value="3"/>
              </operator>
              <operator activated="true" class="multiply" compatibility="9.2.001" expanded="true" height="82" name="Multiply" width="90" x="179" y="187"/>
              <operator activated="true" class="apply_model" compatibility="9.2.001" expanded="true" height="82" name="Apply Model (2)" width="90" x="313" y="136">
                <list key="application_parameters"/>
                <parameter key="create_view" value="false"/>
              </operator>
              <operator activated="true" class="performance_classification" compatibility="9.2.001" expanded="true" height="82" name="Performance (2)" width="90" x="447" y="136">
                <parameter key="main_criterion" value="first"/>
                <parameter key="accuracy" value="true"/>
                <parameter key="classification_error" value="false"/>
                <parameter key="kappa" value="false"/>
                <parameter key="weighted_mean_recall" value="false"/>
                <parameter key="weighted_mean_precision" value="false"/>
                <parameter key="spearman_rho" value="false"/>
                <parameter key="kendall_tau" value="false"/>
                <parameter key="absolute_error" value="false"/>
                <parameter key="relative_error" value="false"/>
                <parameter key="relative_error_lenient" value="false"/>
                <parameter key="relative_error_strict" value="false"/>
                <parameter key="normalized_absolute_error" value="false"/>
                <parameter key="root_mean_squared_error" value="false"/>
                <parameter key="root_relative_squared_error" value="false"/>
                <parameter key="squared_error" value="false"/>
                <parameter key="correlation" value="false"/>
                <parameter key="squared_correlation" value="false"/>
                <parameter key="cross-entropy" value="false"/>
                <parameter key="margin" value="false"/>
                <parameter key="soft_margin_loss" value="false"/>
                <parameter key="logistic_loss" value="false"/>
                <parameter key="skip_undefined_labels" value="true"/>
                <parameter key="use_example_weights" value="true"/>
                <list key="class_weights"/>
              </operator>
              <connect from_port="training set" to_op="Multiply (2)" to_port="input"/>
              <connect from_op="Multiply (2)" from_port="output 1" to_op="Decision Tree" to_port="training set"/>
              <connect from_op="Multiply (2)" from_port="output 2" to_op="Multiply" to_port="input"/>
              <connect from_op="Decision Tree" from_port="model" to_op="Apply Model (2)" to_port="model"/>
              <connect from_op="Multiply" from_port="output 1" to_op="Apply Model (2)" to_port="unlabelled data"/>
              <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
              <connect from_op="Apply Model (2)" from_port="model" to_port="model"/>
              <connect from_op="Performance (2)" from_port="performance" to_port="through 1"/>
              <portSpacing port="source_training set" spacing="0"/>
              <portSpacing port="sink_model" spacing="0"/>
              <portSpacing port="sink_through 1" spacing="0"/>
              <portSpacing port="sink_through 2" spacing="0"/>
            </process>
            <process expanded="true">
              <operator activated="true" class="apply_model" compatibility="9.2.001" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
                <list key="application_parameters"/>
                <parameter key="create_view" value="false"/>
              </operator>
              <operator activated="true" class="performance_classification" compatibility="9.2.001" expanded="true" height="82" name="Performance" width="90" x="179" y="34">
                <parameter key="main_criterion" value="first"/>
                <parameter key="accuracy" value="true"/>
                <parameter key="classification_error" value="false"/>
                <parameter key="kappa" value="false"/>
                <parameter key="weighted_mean_recall" value="false"/>
                <parameter key="weighted_mean_precision" value="false"/>
                <parameter key="spearman_rho" value="false"/>
                <parameter key="kendall_tau" value="false"/>
                <parameter key="absolute_error" value="false"/>
                <parameter key="relative_error" value="false"/>
                <parameter key="relative_error_lenient" value="false"/>
                <parameter key="relative_error_strict" value="false"/>
                <parameter key="normalized_absolute_error" value="false"/>
                <parameter key="root_mean_squared_error" value="false"/>
                <parameter key="root_relative_squared_error" value="false"/>
                <parameter key="squared_error" value="false"/>
                <parameter key="correlation" value="false"/>
                <parameter key="squared_correlation" value="false"/>
                <parameter key="cross-entropy" value="false"/>
                <parameter key="margin" value="false"/>
                <parameter key="soft_margin_loss" value="false"/>
                <parameter key="logistic_loss" value="false"/>
                <parameter key="skip_undefined_labels" value="true"/>
                <parameter key="use_example_weights" value="true"/>
                <list key="class_weights"/>
              </operator>
              <connect from_port="model" to_op="Apply Model" to_port="model"/>
              <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
              <connect from_port="through 1" to_port="performance 2"/>
              <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
              <connect from_op="Performance" from_port="performance" to_port="performance 1"/>
              <connect from_op="Performance" from_port="example set" to_port="test set results"/>
              <portSpacing port="source_model" spacing="0"/>
              <portSpacing port="source_test set" spacing="0"/>
              <portSpacing port="source_through 1" spacing="0"/>
              <portSpacing port="source_through 2" spacing="0"/>
              <portSpacing port="sink_test set results" spacing="0"/>
              <portSpacing port="sink_performance 1" spacing="0"/>
              <portSpacing port="sink_performance 2" spacing="0"/>
              <portSpacing port="sink_performance 3" spacing="0"/>
            </process>
          </operator>
          <connect from_op="Retrieve Iris" from_port="output" to_op="Cross Validation" to_port="example set"/>
          <connect from_op="Cross Validation" from_port="example set" to_port="result 1"/>
          <connect from_op="Cross Validation" from_port="performance 1" to_port="result 2"/>
          <connect from_op="Cross Validation" from_port="performance 2" to_port="result 3"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_result 1" spacing="0"/>
          <portSpacing port="sink_result 2" spacing="0"/>
          <portSpacing port="sink_result 3" spacing="0"/>
          <portSpacing port="sink_result 4" spacing="0"/>
        </process>
      </operator>
    </process>
    
    Regards,

    Lionel
    varunm1yyhuangsgenzermoohrash
  • Telcontar120Telcontar120 Moderator, RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 1,625   Unicorn
    Typically you shouldn't care about the training error.  It is always overfit and that is why it is not a reliable measure of performance in any way.  The cross-validation will deliver the testing error, which is what you should care about.
    If you insist on getting the training error for whatever reason, then you will have to build a process to capture the model performance on the training side (inside cross validation) and then use the Log operator to keep that information.
    Brian T.
    Lindon Ventures 
    Data Science Consulting from Certified RapidMiner Experts
    lionelderkrikoryyhuangsgenzerIngoRM
Sign In or Register to comment.