Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.
Performance evaluation
Ali_Danandeh
Member Posts: 1 Learner I
Dear All,
I built a Decision Tree with Rapidmainer with 70% training and 30% validation data. I would like to see the confusion matrix for the training and validation sets, separately. Could you please let me know how I call this results in Rapidminer?
I built a Decision Tree with Rapidmainer with 70% training and 30% validation data. I would like to see the confusion matrix for the training and validation sets, separately. Could you please let me know how I call this results in Rapidminer?
Tagged:
1
Best Answer
-
hbajpai Member Posts: 102 UnicornHey @Ali_Danandeh,
You can try out the following process. If you are not aware how use XML code, check out https://community.rapidminer.com/discussion/57109/where-to-write-the-solution-code.<?xml version="1.0" encoding="UTF-8"?><process version="9.6.000"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="9.6.000" expanded="true" name="Process"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="2001"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" class="retrieve" compatibility="9.6.000" expanded="true" height="68" name="Retrieve Sonar" width="90" x="179" y="34"> <parameter key="repository_entry" value="//Samples/data/Sonar"/> </operator> <operator activated="true" class="split_data" compatibility="9.6.000" expanded="true" height="103" name="Split Data" width="90" x="313" y="34"> <enumeration key="partitions"> <parameter key="ratio" value="0.7"/> <parameter key="ratio" value="0.3"/> </enumeration> <parameter key="sampling_type" value="automatic"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> </operator> <operator activated="true" class="concurrency:cross_validation" compatibility="9.6.000" expanded="true" height="145" name="Training Cross Validation" width="90" x="581" y="34"> <parameter key="split_on_batch_attribute" value="false"/> <parameter key="leave_one_out" value="false"/> <parameter key="number_of_folds" value="10"/> <parameter key="sampling_type" value="automatic"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> <parameter key="enable_parallel_execution" value="true"/> <process expanded="true"> <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.6.000" expanded="true" height="103" name="Decision Tree" width="90" x="246" y="34"> <parameter key="criterion" value="gain_ratio"/> <parameter key="maximal_depth" value="10"/> <parameter key="apply_pruning" value="true"/> <parameter key="confidence" value="0.1"/> <parameter key="apply_prepruning" value="true"/> <parameter key="minimal_gain" value="0.01"/> <parameter key="minimal_leaf_size" value="2"/> <parameter key="minimal_size_for_split" value="4"/> <parameter key="number_of_prepruning_alternatives" value="3"/> </operator> <connect from_port="training set" to_op="Decision Tree" to_port="training set"/> <connect from_op="Decision Tree" from_port="model" to_port="model"/> <portSpacing port="source_training set" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true"> <operator activated="true" class="apply_model" compatibility="9.6.000" expanded="true" height="82" name="Apply Model" width="90" x="112" y="34"> <list key="application_parameters"/> <parameter key="create_view" value="false"/> </operator> <operator activated="true" class="performance_classification" compatibility="9.6.000" expanded="true" height="82" name="Training" width="90" x="246" y="34"> <parameter key="main_criterion" value="first"/> <parameter key="accuracy" value="true"/> <parameter key="classification_error" value="false"/> <parameter key="kappa" value="false"/> <parameter key="weighted_mean_recall" value="false"/> <parameter key="weighted_mean_precision" value="false"/> <parameter key="spearman_rho" value="false"/> <parameter key="kendall_tau" value="false"/> <parameter key="absolute_error" value="false"/> <parameter key="relative_error" value="false"/> <parameter key="relative_error_lenient" value="false"/> <parameter key="relative_error_strict" value="false"/> <parameter key="normalized_absolute_error" value="false"/> <parameter key="root_mean_squared_error" value="false"/> <parameter key="root_relative_squared_error" value="false"/> <parameter key="squared_error" value="false"/> <parameter key="correlation" value="false"/> <parameter key="squared_correlation" value="false"/> <parameter key="cross-entropy" value="false"/> <parameter key="margin" value="false"/> <parameter key="soft_margin_loss" value="false"/> <parameter key="logistic_loss" value="false"/> <parameter key="skip_undefined_labels" value="true"/> <parameter key="use_example_weights" value="true"/> <list key="class_weights"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Training" to_port="labelled data"/> <connect from_op="Training" from_port="performance" to_port="performance 1"/> <connect from_op="Training" from_port="example set" to_port="test set results"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_test set results" spacing="0"/> <portSpacing port="sink_performance 1" spacing="0"/> <portSpacing port="sink_performance 2" spacing="0"/> </process> </operator> <operator activated="true" class="apply_model" compatibility="9.6.000" expanded="true" height="82" name="Apply Model (2)" width="90" x="715" y="187"> <list key="application_parameters"/> <parameter key="create_view" value="false"/> </operator> <operator activated="true" class="performance_classification" compatibility="9.6.000" expanded="true" height="82" name="Validation" width="90" x="849" y="187"> <parameter key="main_criterion" value="first"/> <parameter key="accuracy" value="true"/> <parameter key="classification_error" value="false"/> <parameter key="kappa" value="false"/> <parameter key="weighted_mean_recall" value="false"/> <parameter key="weighted_mean_precision" value="false"/> <parameter key="spearman_rho" value="false"/> <parameter key="kendall_tau" value="false"/> <parameter key="absolute_error" value="false"/> <parameter key="relative_error" value="false"/> <parameter key="relative_error_lenient" value="false"/> <parameter key="relative_error_strict" value="false"/> <parameter key="normalized_absolute_error" value="false"/> <parameter key="root_mean_squared_error" value="false"/> <parameter key="root_relative_squared_error" value="false"/> <parameter key="squared_error" value="false"/> <parameter key="correlation" value="false"/> <parameter key="squared_correlation" value="false"/> <parameter key="cross-entropy" value="false"/> <parameter key="margin" value="false"/> <parameter key="soft_margin_loss" value="false"/> <parameter key="logistic_loss" value="false"/> <parameter key="skip_undefined_labels" value="true"/> <parameter key="use_example_weights" value="true"/> <list key="class_weights"/> </operator> <connect from_op="Retrieve Sonar" from_port="output" to_op="Split Data" to_port="example set"/> <connect from_op="Split Data" from_port="partition 1" to_op="Training Cross Validation" to_port="example set"/> <connect from_op="Split Data" from_port="partition 2" to_op="Apply Model (2)" to_port="unlabelled data"/> <connect from_op="Training Cross Validation" from_port="model" to_op="Apply Model (2)" to_port="model"/> <connect from_op="Training Cross Validation" from_port="performance 1" to_port="result 2"/> <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Validation" to_port="labelled data"/> <connect from_op="Validation" from_port="performance" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> </process> </operator> </process> <b></b>
Best,
Harshit8