🎉 🎉 RAPIDMINER 9.10 IS OUT!!! 🎉🎉

Download the latest version helping analytics teams accelerate time-to-value for streaming and IIOT use cases.


Classification of tweets in to 3 different categories

Shivani12Shivani12 Member Posts: 5 Newbie
edited April 2020 in Help
I have 60 twitter datasets stored in different excel files with the fields (Tweets ID, Tweet Text, No of likes, No. of share, No.of Retweet and tweet categories). I have manually trained the 10,000 tweets  which is stored in excel file. I want to automatically classify the remaining tweets using RapidMiner but don't know how. I want all the attributes in my output file with category (sports, politics, war) of tweets. Pl explain which operators should be used to classify the text in to categories step by step. I am new to Rapidminer. I watched videos but I am not able to understand anything.  


  • jacobcybulskijacobcybulski Member, University Professor Posts: 391   Unicorn
    edited April 2020
    Try the RapidMiner YouTube tutorial on text mining:
    It has a good introduction to text analysis and its application to classification. Also get the book by Vijay Kotu and Bala Deshpande, Data Science Concepts and Practice, 2nd Edition. Its chapter 9 is all on text mining.

  • Shivani12Shivani12 Member Posts: 5 Newbie
    Tons of thanks for your reply. I have watched the video. Video is not helpful for me. The video is based on sentiment analysis. But, I am not performing sentiment analysis. I have to categorize the tweets stored in excel files in to three different categories (sports, politics and wars). My data set consists of Tweet ID, Tweets Text, Tweet no of likes, No of Shares and category of tweet. I would be grateful if you will be able to share some video in which tweets are categorize in to categories like sports, politics, war etc. 

    If possible please tell me about the operators to be used to perform such type of analysis step by step. My assignment is due. :(:s
  • jacobcybulskijacobcybulski Member, University Professor Posts: 391   Unicorn
    edited April 2020
    Hi @Shivani12 I am not sure if I can find a ready made video of those characteristics, however, I attach here a text parsing and classification of airline reviews (much simplified). You can adapt this example to your data. This is a binomial classification, but you have a polynomial label, so you will need to change the performance operator to a simple performance for classification. See how you go.
    <?xml version="1.0" encoding="UTF-8"?><process version="9.6.000">
      <operator activated="true" class="process" compatibility="9.4.000" expanded="true" name="Process">
        <parameter key="logverbosity" value="init"/>
        <parameter key="random_seed" value="-1"/>
        <parameter key="send_mail" value="never"/>
        <parameter key="notification_email" value=""/>
        <parameter key="process_duration_for_mail" value="30"/>
        <parameter key="encoding" value="SYSTEM"/>
        <process expanded="true">
          <operator activated="true" class="retrieve" compatibility="9.6.000" expanded="true" height="68" name="Retrieve Airlines Full" width="90" x="45" y="34">
            <parameter key="repository_entry" value="Airlines Full"/>
          <operator activated="true" class="sample" compatibility="9.6.000" expanded="true" height="82" name="Sample" width="90" x="45" y="187">
            <parameter key="sample" value="absolute"/>
            <parameter key="balance_data" value="false"/>
            <parameter key="sample_size" value="1000"/>
            <parameter key="sample_ratio" value="0.1"/>
            <parameter key="sample_probability" value="0.1"/>
            <list key="sample_size_per_class"/>
            <list key="sample_ratio_per_class"/>
            <list key="sample_probability_per_class"/>
            <parameter key="use_local_random_seed" value="false"/>
            <parameter key="local_random_seed" value="1992"/>
          <operator activated="true" class="filter_examples" compatibility="9.5.001" expanded="true" height="103" name="Filter Examples" width="90" x="45" y="340">
            <parameter key="parameter_expression" value=""/>
            <parameter key="condition_class" value="custom_filters"/>
            <parameter key="invert_filter" value="false"/>
            <list key="filters_list">
              <parameter key="filters_entry_key" value="recommended.is_not_missing."/>
            <parameter key="filters_logic_and" value="true"/>
            <parameter key="filters_check_metadata" value="true"/>
          <operator activated="true" class="select_attributes" compatibility="9.6.000" expanded="true" height="82" name="Select Text Only" width="90" x="179" y="340">
            <parameter key="attribute_filter_type" value="subset"/>
            <parameter key="attribute" value=""/>
            <parameter key="attributes" value="content|recommended"/>
            <parameter key="use_except_expression" value="false"/>
            <parameter key="value_type" value="attribute_value"/>
            <parameter key="use_value_type_exception" value="false"/>
            <parameter key="except_value_type" value="time"/>
            <parameter key="block_type" value="attribute_block"/>
            <parameter key="use_block_type_exception" value="false"/>
            <parameter key="except_block_type" value="value_matrix_row_start"/>
            <parameter key="invert_selection" value="false"/>
            <parameter key="include_special_attributes" value="false"/>
          <operator activated="true" class="set_role" compatibility="9.6.000" expanded="true" height="82" name="Set Role" width="90" x="179" y="187">
            <parameter key="attribute_name" value="recommended"/>
            <parameter key="target_role" value="label"/>
            <list key="set_additional_roles"/>
          <operator activated="true" class="text:process_document_from_data" compatibility="8.1.000" expanded="true" height="82" name="Process Dos from Data" width="90" x="179" y="34">
            <parameter key="create_word_vector" value="true"/>
            <parameter key="vector_creation" value="TF-IDF"/>
            <parameter key="add_meta_information" value="true"/>
            <parameter key="keep_text" value="true"/>
            <parameter key="prune_method" value="percentual"/>
            <parameter key="prune_below_percent" value="1.0"/>
            <parameter key="prune_above_percent" value="40.0"/>
            <parameter key="prune_below_absolute" value="2"/>
            <parameter key="prune_above_absolute" value="9999"/>
            <parameter key="prune_below_rank" value="0.05"/>
            <parameter key="prune_above_rank" value="0.95"/>
            <parameter key="datamanagement" value="double_sparse_array"/>
            <parameter key="data_management" value="auto"/>
            <parameter key="select_attributes_and_weights" value="true"/>
            <list key="specify_weights">
              <parameter key="content" value="1.0"/>
            <process expanded="true">
              <operator activated="true" class="text:transform_cases" compatibility="9.3.001" expanded="true" height="68" name="Transform Cases" width="90" x="112" y="30">
                <parameter key="transform_to" value="lower case"/>
              <operator activated="true" class="text:tokenize" compatibility="9.3.001" expanded="true" height="68" name="Tokenize" width="90" x="246" y="30">
                <parameter key="mode" value="non letters"/>
                <parameter key="characters" value=".:"/>
                <parameter key="language" value="English"/>
                <parameter key="max_token_length" value="3"/>
              <operator activated="true" class="text:stem_snowball" compatibility="9.3.001" expanded="true" height="68" name="Stem (Snowball)" width="90" x="380" y="30">
                <parameter key="language" value="English"/>
              <operator activated="true" class="text:filter_stopwords_english" compatibility="9.3.001" expanded="true" height="68" name="Filter Stopwords (English)" width="90" x="514" y="30"/>
              <operator activated="true" class="text:filter_by_length" compatibility="9.3.001" expanded="true" height="68" name="Filter Tokens (by Length)" width="90" x="648" y="30">
                <parameter key="min_chars" value="4"/>
                <parameter key="max_chars" value="25"/>
              <connect from_port="document" to_op="Transform Cases" to_port="document"/>
              <connect from_op="Transform Cases" from_port="document" to_op="Tokenize" to_port="document"/>
              <connect from_op="Tokenize" from_port="document" to_op="Stem (Snowball)" to_port="document"/>
              <connect from_op="Stem (Snowball)" from_port="document" to_op="Filter Stopwords (English)" to_port="document"/>
              <connect from_op="Filter Stopwords (English)" from_port="document" to_op="Filter Tokens (by Length)" to_port="document"/>
              <connect from_op="Filter Tokens (by Length)" from_port="document" to_port="document 1"/>
              <portSpacing port="source_document" spacing="0"/>
              <portSpacing port="sink_document 1" spacing="0"/>
              <portSpacing port="sink_document 2" spacing="0"/>
          <operator activated="true" class="weight_by_information_gain" compatibility="9.6.000" expanded="true" height="82" name="Weight by Information Gain" width="90" x="313" y="34">
            <parameter key="normalize_weights" value="true"/>
            <parameter key="sort_weights" value="true"/>
            <parameter key="sort_direction" value="descending"/>
          <operator activated="true" class="select_by_weights" compatibility="9.6.000" expanded="true" height="103" name="Select by Weights" width="90" x="447" y="34">
            <parameter key="weight_relation" value="top k"/>
            <parameter key="weight" value="0.1"/>
            <parameter key="k" value="30"/>
            <parameter key="p" value="0.5"/>
            <parameter key="deselect_unknown" value="true"/>
            <parameter key="use_absolute_weights" value="true"/>
          <operator activated="true" class="concurrency:cross_validation" compatibility="9.6.000" expanded="true" height="145" name="Cross Validation" width="90" x="581" y="34">
            <parameter key="split_on_batch_attribute" value="false"/>
            <parameter key="leave_one_out" value="false"/>
            <parameter key="number_of_folds" value="10"/>
            <parameter key="sampling_type" value="automatic"/>
            <parameter key="use_local_random_seed" value="false"/>
            <parameter key="local_random_seed" value="1992"/>
            <parameter key="enable_parallel_execution" value="true"/>
            <process expanded="true">
              <operator activated="true" class="k_nn" compatibility="9.6.000" expanded="true" height="82" name="k-NN" width="90" x="179" y="34">
                <parameter key="k" value="5"/>
                <parameter key="weighted_vote" value="true"/>
                <parameter key="measure_types" value="MixedMeasures"/>
                <parameter key="mixed_measure" value="MixedEuclideanDistance"/>
                <parameter key="nominal_measure" value="NominalDistance"/>
                <parameter key="numerical_measure" value="EuclideanDistance"/>
                <parameter key="divergence" value="GeneralizedIDivergence"/>
                <parameter key="kernel_type" value="radial"/>
                <parameter key="kernel_gamma" value="1.0"/>
                <parameter key="kernel_sigma1" value="1.0"/>
                <parameter key="kernel_sigma2" value="0.0"/>
                <parameter key="kernel_sigma3" value="2.0"/>
                <parameter key="kernel_degree" value="3.0"/>
                <parameter key="kernel_shift" value="1.0"/>
                <parameter key="kernel_a" value="1.0"/>
                <parameter key="kernel_b" value="0.0"/>
              <connect from_port="training set" to_op="k-NN" to_port="training set"/>
              <connect from_op="k-NN" from_port="model" to_port="model"/>
              <portSpacing port="source_training set" spacing="0"/>
              <portSpacing port="sink_model" spacing="0"/>
              <portSpacing port="sink_through 1" spacing="0"/>
            <process expanded="true">
              <operator activated="true" class="apply_model" compatibility="9.6.000" expanded="true" height="82" name="Apply Model" width="90" x="112" y="34">
                <list key="application_parameters"/>
                <parameter key="create_view" value="false"/>
              <operator activated="true" class="performance_binominal_classification" compatibility="9.6.000" expanded="true" height="82" name="Performance" width="90" x="246" y="34">
                <parameter key="manually_set_positive_class" value="false"/>
                <parameter key="main_criterion" value="first"/>
                <parameter key="accuracy" value="true"/>
                <parameter key="classification_error" value="false"/>
                <parameter key="kappa" value="true"/>
                <parameter key="AUC (optimistic)" value="false"/>
                <parameter key="AUC" value="true"/>
                <parameter key="AUC (pessimistic)" value="false"/>
                <parameter key="precision" value="false"/>
                <parameter key="recall" value="false"/>
                <parameter key="lift" value="false"/>
                <parameter key="fallout" value="false"/>
                <parameter key="f_measure" value="false"/>
                <parameter key="false_positive" value="false"/>
                <parameter key="false_negative" value="false"/>
                <parameter key="true_positive" value="false"/>
                <parameter key="true_negative" value="false"/>
                <parameter key="sensitivity" value="false"/>
                <parameter key="specificity" value="false"/>
                <parameter key="youden" value="false"/>
                <parameter key="positive_predictive_value" value="false"/>
                <parameter key="negative_predictive_value" value="false"/>
                <parameter key="psep" value="false"/>
                <parameter key="skip_undefined_labels" value="true"/>
                <parameter key="use_example_weights" value="true"/>
              <connect from_port="model" to_op="Apply Model" to_port="model"/>
              <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
              <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
              <connect from_op="Performance" from_port="performance" to_port="performance 1"/>
              <connect from_op="Performance" from_port="example set" to_port="test set results"/>
              <portSpacing port="source_model" spacing="0"/>
              <portSpacing port="source_test set" spacing="0"/>
              <portSpacing port="source_through 1" spacing="0"/>
              <portSpacing port="sink_test set results" spacing="0"/>
              <portSpacing port="sink_performance 1" spacing="0"/>
              <portSpacing port="sink_performance 2" spacing="0"/>
          <connect from_op="Retrieve Airlines Full" from_port="output" to_op="Sample" to_port="example set input"/>
          <connect from_op="Sample" from_port="example set output" to_op="Filter Examples" to_port="example set input"/>
          <connect from_op="Filter Examples" from_port="example set output" to_op="Select Text Only" to_port="example set input"/>
          <connect from_op="Select Text Only" from_port="example set output" to_op="Set Role" to_port="example set input"/>
          <connect from_op="Set Role" from_port="example set output" to_op="Process Dos from Data" to_port="example set"/>
          <connect from_op="Process Dos from Data" from_port="example set" to_op="Weight by Information Gain" to_port="example set"/>
          <connect from_op="Weight by Information Gain" from_port="weights" to_op="Select by Weights" to_port="weights"/>
          <connect from_op="Weight by Information Gain" from_port="example set" to_op="Select by Weights" to_port="example set input"/>
          <connect from_op="Select by Weights" from_port="example set output" to_op="Cross Validation" to_port="example set"/>
          <connect from_op="Cross Validation" from_port="model" to_port="result 1"/>
          <connect from_op="Cross Validation" from_port="test result set" to_port="result 2"/>
          <connect from_op="Cross Validation" from_port="performance 1" to_port="result 3"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_result 1" spacing="0"/>
          <portSpacing port="sink_result 2" spacing="21"/>
          <portSpacing port="sink_result 3" spacing="0"/>
          <portSpacing port="sink_result 4" spacing="0"/>

    You can find this data set here: https://github.com/quankiquanki/skytrax-reviews-dataset

  • Shivani12Shivani12 Member Posts: 5 Newbie
    Sorry.. I did not get you.. Do you want me use coding/Python ???
  • jacobcybulskijacobcybulski Member, University Professor Posts: 391   Unicorn
    edited April 2020
    @Shivani12 this is not Python code but the contents of the RapidMiner file in XML format (yes it is plain text), which can be copied and placed in a xyz.rmp file within your repository. In case it is confusing, I attach the whole RapidMiner process file (hence the suffix .rmp), make sure you place it in a folder somewhere inside the repository on your disk (if you right click on the "Local Repository" and select "Configure Repository" you will see where it is. Good luck.

  • Shivani12Shivani12 Member Posts: 5 Newbie
    Thanks I tried a lot.. But its not working in my case. 
  • jacobcybulskijacobcybulski Member, University Professor Posts: 391   Unicorn
    @Shivani12 , if you explain what did not work may be we could help?
  • Shivani12Shivani12 Member Posts: 5 Newbie
    My datasets consists of Tweet ID, Tweets text, No. of likes, No. of shares on each comment and category of each tweet. All theses tweets (approx. 5000) are stored in excel. I want to categorize tweets into categories like sports, politics, and war. Airline classification will not work because the tweet content is unstructured.    
  • jacobcybulskijacobcybulski Member, University Professor Posts: 391   Unicorn
    @Shivani12 , the airline classification is a very similar problem to yours, ie both have structured and unstructured (text) attributes, in fact the example I have sent to you uses only text attributes. You want twits to be classified into three classes, the airline example classifies airline reviews into two classes. I suggest to go through the book by Kotu and Deshpande looking for more patterns in RapidMiner modelling.
Sign In or Register to comment.