Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.

Cannot change k-value for the sample kmean with plot.

kal12kal12 Member Posts: 5 Learner I
edited August 2020 in Help
hello community. I need to do k-means cluster using rapidminer and produce elbow method graph. i've tested the k-means clustering with plot sample. However, when I try to change the k value from 13 to 5 for the k-means operator and run, the k value does not change instead it turn back to 13 and produce 13 cluster. Can someone tell me what is the problem and solution?

Thank you in advance.
Tagged:

Best Answer

Answers

  • MartinLiebigMartinLiebig Administrator, Moderator, Employee, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,529 RM Data Scientist
    Hi @Kal12,
    are you sure that you don't use any optimize around your kmeans? Or that you are using X-means?

    Please post your process here, then we can have a look.

    Best,
    Martin
    - Sr. Director Data Solutions, Altair RapidMiner -
    Dortmund, Germany
  • kal12kal12 Member Posts: 5 Learner I
    Thank you for your response. This is the xml, I also attach the .rmp file.

    <?xml version="1.0" encoding="UTF-8"?><process version="9.7.002">
      <context>
        <input/>
        <output/>
        <macros/>
      </context>
      <operator activated="true" class="process" compatibility="9.7.002" expanded="true" name="Root" origin="GENERATED_SAMPLE">
        <parameter key="logverbosity" value="warning"/>
        <parameter key="random_seed" value="2001"/>
        <parameter key="send_mail" value="never"/>
        <parameter key="notification_email" value=""/>
        <parameter key="process_duration_for_mail" value="30"/>
        <parameter key="encoding" value="SYSTEM"/>
        <process expanded="true">
          <operator activated="true" class="retrieve" compatibility="9.7.002" expanded="true" height="68" name="Retrieve" origin="GENERATED_SAMPLE" width="90" x="45" y="34">
            <parameter key="repository_entry" value="../../data/Iris"/>
          </operator>
          <operator activated="true" class="loop_parameters" compatibility="9.7.002" expanded="true" height="82" name="ParameterIteration" origin="GENERATED_SAMPLE" width="90" x="179" y="34">
            <list key="parameters">
              <parameter key="KMeans.k" value="2,3,4,5,6,7,8,9,10,11,13"/>
            </list>
            <parameter key="error_handling" value="fail on error"/>
            <parameter key="synchronize" value="false"/>
            <process expanded="true">
              <operator activated="true" class="concurrency:k_means" compatibility="9.7.002" expanded="true" height="82" name="KMeans" origin="GENERATED_SAMPLE" width="90" x="45" y="34">
                <parameter key="add_cluster_attribute" value="true"/>
                <parameter key="add_as_label" value="false"/>
                <parameter key="remove_unlabeled" value="false"/>
                <parameter key="k" value="13"/>
                <parameter key="max_runs" value="10"/>
                <parameter key="determine_good_start_values" value="false"/>
                <parameter key="measure_types" value="BregmanDivergences"/>
                <parameter key="mixed_measure" value="MixedEuclideanDistance"/>
                <parameter key="nominal_measure" value="NominalDistance"/>
                <parameter key="numerical_measure" value="EuclideanDistance"/>
                <parameter key="divergence" value="SquaredEuclideanDistance"/>
                <parameter key="kernel_type" value="radial"/>
                <parameter key="kernel_gamma" value="1.0"/>
                <parameter key="kernel_sigma1" value="1.0"/>
                <parameter key="kernel_sigma2" value="0.0"/>
                <parameter key="kernel_sigma3" value="2.0"/>
                <parameter key="kernel_degree" value="3.0"/>
                <parameter key="kernel_shift" value="1.0"/>
                <parameter key="kernel_a" value="1.0"/>
                <parameter key="kernel_b" value="0.0"/>
                <parameter key="max_optimization_steps" value="100"/>
                <parameter key="use_local_random_seed" value="false"/>
                <parameter key="local_random_seed" value="1992"/>
              </operator>
              <operator activated="true" class="cluster_distance_performance" compatibility="9.7.002" expanded="true" height="103" name="Evaluation" origin="GENERATED_SAMPLE" width="90" x="179" y="34">
                <parameter key="main_criterion" value="Avg. within centroid distance"/>
                <parameter key="main_criterion_only" value="false"/>
                <parameter key="normalize" value="false"/>
                <parameter key="maximize" value="false"/>
              </operator>
              <operator activated="true" class="log" compatibility="9.7.002" expanded="true" height="103" name="ProcessLog" origin="GENERATED_SAMPLE" width="90" x="313" y="34">
                <list key="log">
                  <parameter key="k" value="operator.KMeans.parameter.k"/>
                  <parameter key="DB" value="operator.Evaluation.value.DaviesBouldin"/>
                  <parameter key="W" value="operator.Evaluation.value.avg_within_distance"/>
                </list>
                <parameter key="sorting_type" value="none"/>
                <parameter key="sorting_k" value="100"/>
                <parameter key="persistent" value="false"/>
              </operator>
              <connect from_port="input 1" to_op="KMeans" to_port="example set"/>
              <connect from_op="KMeans" from_port="cluster model" to_op="Evaluation" to_port="cluster model"/>
              <connect from_op="KMeans" from_port="clustered set" to_op="Evaluation" to_port="example set"/>
              <connect from_op="Evaluation" from_port="performance" to_op="ProcessLog" to_port="through 1"/>
              <connect from_op="Evaluation" from_port="example set" to_op="ProcessLog" to_port="through 2"/>
              <connect from_op="ProcessLog" from_port="through 1" to_port="performance"/>
              <connect from_op="ProcessLog" from_port="through 2" to_port="result 1"/>
              <portSpacing port="source_input 1" spacing="0"/>
              <portSpacing port="source_input 2" spacing="0"/>
              <portSpacing port="sink_performance" spacing="0"/>
              <portSpacing port="sink_result 1" spacing="0"/>
              <portSpacing port="sink_result 2" spacing="0"/>
            </process>
          </operator>
          <connect from_op="Retrieve" from_port="output" to_op="ParameterIteration" to_port="input 1"/>
          <connect from_op="ParameterIteration" from_port="result 1" to_port="result 1"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_result 1" spacing="0"/>
          <portSpacing port="sink_result 2" spacing="0"/>
        </process>
      </operator>
    </process>


  • kal12kal12 Member Posts: 5 Learner I
    Ok, now I see. Thank you very much.
Sign In or Register to comment.