Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.
Cannot change k-value for the sample kmean with plot.
hello community. I need to do k-means cluster using rapidminer and produce elbow method graph. i've tested the k-means clustering with plot sample. However, when I try to change the k value from 13 to 5 for the k-means operator and run, the k value does not change instead it turn back to 13 and produce 13 cluster. Can someone tell me what is the problem and solution?
Thank you in advance.
Tagged:
0
Best Answer
-
MartinLiebig Administrator, Moderator, Employee, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,529 RM Data ScientistHi,this is exactly what i said. You use Loop Parameters to override the k of kmeans. Please change the parameters of Loop Parameters.Best,Martin- Sr. Director Data Solutions, Altair RapidMiner -
Dortmund, Germany5
Answers
Dortmund, Germany
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="9.7.002" expanded="true" name="Root" origin="GENERATED_SAMPLE">
<parameter key="logverbosity" value="warning"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="SYSTEM"/>
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="9.7.002" expanded="true" height="68" name="Retrieve" origin="GENERATED_SAMPLE" width="90" x="45" y="34">
<parameter key="repository_entry" value="../../data/Iris"/>
</operator>
<operator activated="true" class="loop_parameters" compatibility="9.7.002" expanded="true" height="82" name="ParameterIteration" origin="GENERATED_SAMPLE" width="90" x="179" y="34">
<list key="parameters">
<parameter key="KMeans.k" value="2,3,4,5,6,7,8,9,10,11,13"/>
</list>
<parameter key="error_handling" value="fail on error"/>
<parameter key="synchronize" value="false"/>
<process expanded="true">
<operator activated="true" class="concurrency:k_means" compatibility="9.7.002" expanded="true" height="82" name="KMeans" origin="GENERATED_SAMPLE" width="90" x="45" y="34">
<parameter key="add_cluster_attribute" value="true"/>
<parameter key="add_as_label" value="false"/>
<parameter key="remove_unlabeled" value="false"/>
<parameter key="k" value="13"/>
<parameter key="max_runs" value="10"/>
<parameter key="determine_good_start_values" value="false"/>
<parameter key="measure_types" value="BregmanDivergences"/>
<parameter key="mixed_measure" value="MixedEuclideanDistance"/>
<parameter key="nominal_measure" value="NominalDistance"/>
<parameter key="numerical_measure" value="EuclideanDistance"/>
<parameter key="divergence" value="SquaredEuclideanDistance"/>
<parameter key="kernel_type" value="radial"/>
<parameter key="kernel_gamma" value="1.0"/>
<parameter key="kernel_sigma1" value="1.0"/>
<parameter key="kernel_sigma2" value="0.0"/>
<parameter key="kernel_sigma3" value="2.0"/>
<parameter key="kernel_degree" value="3.0"/>
<parameter key="kernel_shift" value="1.0"/>
<parameter key="kernel_a" value="1.0"/>
<parameter key="kernel_b" value="0.0"/>
<parameter key="max_optimization_steps" value="100"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
</operator>
<operator activated="true" class="cluster_distance_performance" compatibility="9.7.002" expanded="true" height="103" name="Evaluation" origin="GENERATED_SAMPLE" width="90" x="179" y="34">
<parameter key="main_criterion" value="Avg. within centroid distance"/>
<parameter key="main_criterion_only" value="false"/>
<parameter key="normalize" value="false"/>
<parameter key="maximize" value="false"/>
</operator>
<operator activated="true" class="log" compatibility="9.7.002" expanded="true" height="103" name="ProcessLog" origin="GENERATED_SAMPLE" width="90" x="313" y="34">
<list key="log">
<parameter key="k" value="operator.KMeans.parameter.k"/>
<parameter key="DB" value="operator.Evaluation.value.DaviesBouldin"/>
<parameter key="W" value="operator.Evaluation.value.avg_within_distance"/>
</list>
<parameter key="sorting_type" value="none"/>
<parameter key="sorting_k" value="100"/>
<parameter key="persistent" value="false"/>
</operator>
<connect from_port="input 1" to_op="KMeans" to_port="example set"/>
<connect from_op="KMeans" from_port="cluster model" to_op="Evaluation" to_port="cluster model"/>
<connect from_op="KMeans" from_port="clustered set" to_op="Evaluation" to_port="example set"/>
<connect from_op="Evaluation" from_port="performance" to_op="ProcessLog" to_port="through 1"/>
<connect from_op="Evaluation" from_port="example set" to_op="ProcessLog" to_port="through 2"/>
<connect from_op="ProcessLog" from_port="through 1" to_port="performance"/>
<connect from_op="ProcessLog" from_port="through 2" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="source_input 2" spacing="0"/>
<portSpacing port="sink_performance" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
<connect from_op="Retrieve" from_port="output" to_op="ParameterIteration" to_port="input 1"/>
<connect from_op="ParameterIteration" from_port="result 1" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>