The Altair Community is migrating to a new platform to provide a better experience for you. The RapidMiner Community will merge with the Altair Community at the same time. In preparation for the migration, both communities are on read-only mode from July 15th - July 24th, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here.

WeightOptimization in RM4

schmittschmitt Member Posts: 5 Contributor II
edited November 2018 in Help
Hi all,

I'm trying to interatively optimize my classifier with WeightOptimization from RapidMiner 4. (Many of my processes are still in RM4, so I'm still somehow tied to RM4).
Can anybody share a running example? Haven't found anything about this operator.

I always get the error "Parameter optimization not supported for non-number parameter type 'BinominalClassificationPerformance.false_positive'"

Any clue?


<operator name="Classifier" class="Process" expanded="yes">
    <operator name="NominalExampleSetGenerator" class="NominalExampleSetGenerator">
    <operator name="InfoGainRatioWeighting" class="InfoGainRatioWeighting">
    <operator name="WeightOptimization" class="WeightOptimization" expanded="yes">
        <parameter key="parameter" value="BinominalClassificationPerformance.false_positive"/>
        <operator name="XValidation" class="XValidation" expanded="yes">
            <operator name="Weka-SMO" class="W-SMO">
                <parameter key="D" value="true"/>
                <parameter key="C" value="0.01"/>
                <parameter key="N" value="1.0"/>
                <parameter key="M" value="true"/>
                <parameter key="K" value="weka.classifiers.functions.supportVector.PolyKernel -D -C 0 -E 1.0"/>
            <operator name="OperatorChain" class="OperatorChain" expanded="yes">
                <operator name="Apply Model" class="ModelApplier">
                    <list key="application_parameters">
                <operator name="BinominalClassificationPerformance" class="BinominalClassificationPerformance">
                    <parameter key="keep_example_set" value="true"/>
                    <parameter key="precision" value="true"/>
                    <parameter key="recall" value="true"/>
                    <parameter key="f_measure" value="true"/>
                    <parameter key="false_positive" value="true"/>
                    <parameter key="false_negative" value="true"/>
                    <parameter key="true_positive" value="true"/>
                    <parameter key="true_negative" value="true"/>


  • Options
    landland RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 2,531 Unicorn
    what about converting the processes to RapidMiner 5? Most of them should still work or will work with small adjustments.

    Unfortuantely we can't give you support for RM 4 anymore...

Sign In or Register to comment.