The RapidMiner community is on read-only mode until further notice. Technical support via cases will continue to work as is. For any urgent licensing related requests from Students/Faculty members, please use the Altair academic forum here.
"extract results of similarity process to java"
Hello,
I'm new in RapidMiner and I need some help please!
I have a process in RM witch find similarity between some records. This process run successfully!
I run this process in java, but I cant get the results.
In java code run the process and get the result in IOContainer object.
Then get data of first outpout port with
Thank you!!!
The RM process
I'm new in RapidMiner and I need some help please!
I have a process in RM witch find similarity between some records. This process run successfully!
I run this process in java, but I cant get the results.
In java code run the process and get the result in IOContainer object.
Then get data of first outpout port with
SimilarityMeasureObject result = (SimilarityMeasureObject)ioResult.getElementAt(0);How can get the results of this process??
Thank you!!!
The RM process
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.3.008">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.3.008" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="read_database" compatibility="5.3.008" expanded="true" height="60" name="Read Database" width="90" x="45" y="75">
<parameter key="connection" value="diplomatii"/>
<parameter key="query" value="SELECT `comment` FROM `web`"/>
<enumeration key="parameters"/>
</operator>
<operator activated="true" class="nominal_to_text" compatibility="5.3.008" expanded="true" height="76" name="Nominal to Text" width="90" x="179" y="75"/>
<operator activated="true" class="text:process_document_from_data" compatibility="5.3.000" expanded="true" height="76" name="Process Documents from Data" width="90" x="313" y="75">
<parameter key="prune_method" value="percentual"/>
<parameter key="prune_above_percent" value="60.0"/>
<parameter key="select_attributes_and_weights" value="true"/>
<list key="specify_weights">
<parameter key="comment" value="1.0"/>
</list>
<process expanded="true">
<operator activated="true" class="text:replace_tokens" compatibility="5.3.000" expanded="true" height="60" name="Replace Tokens" width="90" x="45" y="75">
<list key="replace_dictionary">
<parameter key="[-!"#$%&'()*+,./:;<=>?@\[\\\]_`{|}~]" value=" "/>
</list>
</operator>
<operator activated="true" class="text:tokenize" compatibility="5.3.000" expanded="true" height="60" name="Tokenize" width="90" x="179" y="75">
<parameter key="mode" value="linguistic tokens"/>
</operator>
<operator activated="true" class="text:transform_cases" compatibility="5.3.000" expanded="true" height="60" name="Transform Cases" width="90" x="313" y="75">
<parameter key="transform_to" value="upper case"/>
</operator>
<operator activated="true" class="text:filter_by_length" compatibility="5.3.000" expanded="true" height="60" name="Filter Tokens (by Length)" width="90" x="179" y="210"/>
<operator activated="true" class="text:filter_stopwords_dictionary" compatibility="5.3.000" expanded="true" height="76" name="Filter Stopwords (Dictionary)" width="90" x="313" y="210">
<parameter key="file" value="C:\Users\Dimitris\Desktop\greek stopwords.txt"/>
</operator>
<operator activated="true" class="text:filter_stopwords_english" compatibility="5.3.000" expanded="true" height="60" name="Filter Stopwords (English)" width="90" x="447" y="210"/>
<operator activated="true" class="text:stem_snowball" compatibility="5.3.000" expanded="true" height="60" name="Stem (Snowball)" width="90" x="581" y="210"/>
<operator activated="true" class="text:generate_n_grams_terms" compatibility="5.3.000" expanded="true" height="60" name="Generate n-Grams (Terms)" width="90" x="648" y="75">
<parameter key="max_length" value="3"/>
</operator>
<connect from_port="document" to_op="Replace Tokens" to_port="document"/>
<connect from_op="Replace Tokens" from_port="document" to_op="Tokenize" to_port="document"/>
<connect from_op="Tokenize" from_port="document" to_op="Transform Cases" to_port="document"/>
<connect from_op="Transform Cases" from_port="document" to_op="Filter Tokens (by Length)" to_port="document"/>
<connect from_op="Filter Tokens (by Length)" from_port="document" to_op="Filter Stopwords (Dictionary)" to_port="document"/>
<connect from_op="Filter Stopwords (Dictionary)" from_port="document" to_op="Filter Stopwords (English)" to_port="document"/>
<connect from_op="Filter Stopwords (English)" from_port="document" to_op="Stem (Snowball)" to_port="document"/>
<connect from_op="Stem (Snowball)" from_port="document" to_op="Generate n-Grams (Terms)" to_port="document"/>
<connect from_op="Generate n-Grams (Terms)" from_port="document" to_port="document 1"/>
<portSpacing port="source_document" spacing="0"/>
<portSpacing port="sink_document 1" spacing="0"/>
<portSpacing port="sink_document 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="data_to_similarity" compatibility="5.3.008" expanded="true" height="76" name="Data to Similarity" width="90" x="447" y="75">
<parameter key="measure_types" value="NumericalMeasures"/>
<parameter key="numerical_measure" value="CosineSimilarity"/>
</operator>
<connect from_op="Read Database" from_port="output" to_op="Nominal to Text" to_port="example set input"/>
<connect from_op="Nominal to Text" from_port="example set output" to_op="Process Documents from Data" to_port="example set"/>
<connect from_op="Process Documents from Data" from_port="example set" to_op="Data to Similarity" to_port="example set"/>
<connect from_op="Data to Similarity" from_port="similarity" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>
Tagged:
0
Answers
I'm sorry for missing this post for so long! :-[
You should get the SimilarityMeasureObject with the code and process you provided - what exactly is the problem now?
Regards,
Marco