Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.

How to apply batch model to non batched data

hans94miguelhans94miguel Member Posts: 1 Learner III
edited November 2018 in Help
hi!
i have created a model using batched validation, is there a way to apply this model to non-batched data?

Here is the sample process I created

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="7.0.001">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="7.0.001" expanded="true" name="Process">
    <parameter key="logverbosity" value="init"/>
    <parameter key="random_seed" value="2001"/>
    <parameter key="send_mail" value="never"/>
    <parameter key="notification_email" value=""/>
    <parameter key="process_duration_for_mail" value="30"/>
    <parameter key="encoding" value="SYSTEM"/>
    <process expanded="true">
      <operator activated="true" class="retrieve" compatibility="7.0.001" expanded="true" height="68" name="Retrieve distmodel3" width="90" x="45" y="136">
        <parameter key="repository_entry" value="../data/distmodel3"/>
      </operator>
      <operator activated="true" class="set_role" compatibility="7.0.001" expanded="true" height="82" name="Set Role" width="90" x="246" y="187">
        <parameter key="attribute_name" value="batchid"/>
        <parameter key="target_role" value="batch"/>
        <list key="set_additional_roles">
          <parameter key="Letter" value="label"/>
          <parameter key="Frame" value="batch"/>
          <parameter key="Feat1" value="regular"/>
          <parameter key="Feat2" value="regular"/>
          <parameter key="Feat3" value="regular"/>
          <parameter key="Feat4" value="regular"/>
          <parameter key="Feat5" value="regular"/>
          <parameter key="Feat6" value="regular"/>
          <parameter key="Feat7" value="regular"/>
          <parameter key="Feat8" value="regular"/>
          <parameter key="Gender" value="regular"/>
        </list>
      </operator>
      <operator activated="true" class="batch_x_validation" compatibility="7.0.001" expanded="true" height="124" name="Validation" width="90" x="380" y="85">
        <parameter key="create_complete_model" value="false"/>
        <parameter key="average_performances_only" value="true"/>
        <process expanded="true">
          <operator activated="false" class="weka:W-J48" compatibility="7.0.000" expanded="true" height="82" name="W-J48" width="90" x="112" y="34">
            <parameter key="U" value="true"/>
            <parameter key="C" value="0.25"/>
            <parameter key="M" value="2.0"/>
            <parameter key="R" value="false"/>
            <parameter key="B" value="true"/>
            <parameter key="S" value="false"/>
            <parameter key="L" value="false"/>
            <parameter key="A" value="false"/>
          </operator>
          <operator activated="true" class="k_nn" compatibility="7.0.001" expanded="true" height="82" name="k-NN" width="90" x="112" y="187">
            <parameter key="k" value="3"/>
            <parameter key="weighted_vote" value="false"/>
            <parameter key="measure_types" value="MixedMeasures"/>
            <parameter key="mixed_measure" value="MixedEuclideanDistance"/>
            <parameter key="nominal_measure" value="NominalDistance"/>
            <parameter key="numerical_measure" value="EuclideanDistance"/>
            <parameter key="divergence" value="GeneralizedIDivergence"/>
            <parameter key="kernel_type" value="radial"/>
            <parameter key="kernel_gamma" value="1.0"/>
            <parameter key="kernel_sigma1" value="1.0"/>
            <parameter key="kernel_sigma2" value="0.0"/>
            <parameter key="kernel_sigma3" value="2.0"/>
            <parameter key="kernel_degree" value="3.0"/>
            <parameter key="kernel_shift" value="1.0"/>
            <parameter key="kernel_a" value="1.0"/>
            <parameter key="kernel_b" value="0.0"/>
          </operator>
          <connect from_port="training" to_op="k-NN" to_port="training set"/>
          <connect from_op="k-NN" from_port="model" to_port="model"/>
          <portSpacing port="source_training" spacing="0"/>
          <portSpacing port="sink_model" spacing="0"/>
          <portSpacing port="sink_through 1" spacing="0"/>
        </process>
        <process expanded="true">
          <operator activated="true" class="apply_model" compatibility="7.0.001" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
            <list key="application_parameters"/>
            <parameter key="create_view" value="false"/>
          </operator>
          <operator activated="true" class="performance_classification" compatibility="7.0.001" expanded="true" height="82" name="Performance" width="90" x="179" y="34">
            <parameter key="main_criterion" value="first"/>
            <parameter key="accuracy" value="true"/>
            <parameter key="classification_error" value="true"/>
            <parameter key="kappa" value="true"/>
            <parameter key="weighted_mean_recall" value="false"/>
            <parameter key="weighted_mean_precision" value="false"/>
            <parameter key="spearman_rho" value="false"/>
            <parameter key="kendall_tau" value="false"/>
            <parameter key="absolute_error" value="false"/>
            <parameter key="relative_error" value="false"/>
            <parameter key="relative_error_lenient" value="false"/>
            <parameter key="relative_error_strict" value="false"/>
            <parameter key="normalized_absolute_error" value="false"/>
            <parameter key="root_mean_squared_error" value="false"/>
            <parameter key="root_relative_squared_error" value="false"/>
            <parameter key="squared_error" value="false"/>
            <parameter key="correlation" value="false"/>
            <parameter key="squared_correlation" value="false"/>
            <parameter key="cross-entropy" value="false"/>
            <parameter key="margin" value="false"/>
            <parameter key="soft_margin_loss" value="false"/>
            <parameter key="logistic_loss" value="false"/>
            <parameter key="skip_undefined_labels" value="true"/>
            <parameter key="use_example_weights" value="true"/>
            <list key="class_weights"/>
          </operator>
          <connect from_port="model" to_op="Apply Model" to_port="model"/>
          <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
          <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
          <connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
          <portSpacing port="source_model" spacing="0"/>
          <portSpacing port="source_test set" spacing="0"/>
          <portSpacing port="source_through 1" spacing="0"/>
          <portSpacing port="sink_averagable 1" spacing="0"/>
          <portSpacing port="sink_averagable 2" spacing="0"/>
        </process>
      </operator>
      <operator activated="true" class="legacy:write_model" compatibility="7.0.001" expanded="true" height="68" name="Write Model" width="90" x="514" y="187">
        <parameter key="model_file" value="C:\Users\Hans\Documents\ModelFile.mod"/>
        <parameter key="overwrite_existing_file" value="true"/>
        <parameter key="output_type" value="XML Zipped"/>
      </operator>
      <connect from_op="Retrieve distmodel3" from_port="output" to_op="Set Role" to_port="example set input"/>
      <connect from_op="Set Role" from_port="example set output" to_op="Validation" to_port="training"/>
      <connect from_op="Validation" from_port="model" to_op="Write Model" to_port="input"/>
      <connect from_op="Validation" from_port="training" to_port="result 1"/>
      <connect from_op="Validation" from_port="averagable 1" to_port="result 2"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
      <portSpacing port="sink_result 3" spacing="0"/>
    </process>
  </operator>
</process>

Answers

  • earmijoearmijo Member Posts: 271 Unicorn
    The model that comes out of an operator of X-val uses the entire dataset. It's irrelevant if you used batch x-val or regular x-val. Store the model or write it to a file. Then you can apply it to a dataset with the same structure.
Sign In or Register to comment.