The RapidMiner community is on read-only mode until further notice. Technical support via cases will continue to work as is. For any urgent licensing related requests from Students/Faculty members, please use the Altair academic forum here.
confusion matrix results
Hi,
I am new to data mining and Rapid Miner.
I have made a model with a KNN in a x validation with categorical data. I am getting a confusion matrix which doesn't appear to be standard and am having trouble understanding it. Could someone explain what these numbers represent.
PerformanceVector:
accuracy: 72.73%
ConfusionMatrix:
True: US CA FR ES IT GB NL AU DE PT other
US: 0.027 0.028 0.062 0.039 0.041 0.038 0.012 0.017 0.019 0.012 0.016
CA: 0.000 0.107 0.001 0.000 0.001 0.001 0.000 0 0.000 0 0.000
FR: 0.001 0.001 0.056 0.002 0.002 0.002 0.000 0.000 0.000 0.001 0.001
ES: 0.000 0.001 0.002 0.087 0.001 0.001 0.001 0.001 0.000 0 0.000
IT: 0.000 0.001 0.003 0.002 0.082 0.002 0.000 0 0.001 0 0.001
GB: 0.000 0.000 0.002 0.001 0.001 0.087 0 0 0.001 0.001 0.001
NL: 0.000 0 0.001 0.001 0.001 0.000 0.117 0 0 0 0.000
AU: 0.000 0 0.001 0.000 0.000 0.000 0 0.115 0.000 0 0.000
DE: 0.000 0 0.001 0.001 0.001 0.001 0 0 0.114 0 0.000
PT: 0.000 0.000 0.000 0 0 0 0 0 0 0.115 0.000
other: 0.002 0.001 0.008 0.004 0.006 0.004 0 0 0.001 0 0.053
absolute_error: 0.273 +/- 0.000
thanks
Warwick
I am new to data mining and Rapid Miner.
I have made a model with a KNN in a x validation with categorical data. I am getting a confusion matrix which doesn't appear to be standard and am having trouble understanding it. Could someone explain what these numbers represent.
PerformanceVector:
accuracy: 72.73%
ConfusionMatrix:
True: US CA FR ES IT GB NL AU DE PT other
US: 0.027 0.028 0.062 0.039 0.041 0.038 0.012 0.017 0.019 0.012 0.016
CA: 0.000 0.107 0.001 0.000 0.001 0.001 0.000 0 0.000 0 0.000
FR: 0.001 0.001 0.056 0.002 0.002 0.002 0.000 0.000 0.000 0.001 0.001
ES: 0.000 0.001 0.002 0.087 0.001 0.001 0.001 0.001 0.000 0 0.000
IT: 0.000 0.001 0.003 0.002 0.082 0.002 0.000 0 0.001 0 0.001
GB: 0.000 0.000 0.002 0.001 0.001 0.087 0 0 0.001 0.001 0.001
NL: 0.000 0 0.001 0.001 0.001 0.000 0.117 0 0 0 0.000
AU: 0.000 0 0.001 0.000 0.000 0.000 0 0.115 0.000 0 0.000
DE: 0.000 0 0.001 0.001 0.001 0.001 0 0 0.114 0 0.000
PT: 0.000 0.000 0.000 0 0 0 0 0 0 0.115 0.000
other: 0.002 0.001 0.008 0.004 0.006 0.004 0 0 0.001 0 0.053
absolute_error: 0.273 +/- 0.000
thanks
Warwick
0
Answers
~Martin
Dortmund, Germany
Thanks for replying. I looked at the video . I understand the concepts of the confusion table. My question is why are the values I am creating in the confusion table so small? In the video the confusion table shows the number of examples that fall in each category( True True, True False etc). My values are very small ie. 0.027 so this is obviously not the case in my situation. What is it displaying instead?
Thanks
Warwick
See the below example which uses the Generate Weight operator to make a confusion matrix similar to yours. Try putting the weighting inside the training side of the XValidation.