Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.
"[solved]K means clustering for text data to cluster similar data"
Hello I am new rapidminer
I have taken sample data as (for general study purpose)
Task
a
a
a
a
f
f
f
f
f
d
d
d
r
r
d
.
.
.
(repeating these characters i.e. "a", "r"," d"," f")
in excel file
and now I am applying kmeans clustering with 4 cluster (as I used 4 characters)
for smaller number of occurrences of "a" "r" "d" "f" when almost evenly distributed it works fine
but when a particular character dominates one cluster becomes empty and others are filled
what should be used in-order to avoid this situation ?
this is what I tried
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.1.011">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.1.011" expanded="true" name="Process">
<process expanded="true" height="396" width="751">
<operator activated="true" class="read_excel" compatibility="5.1.011" expanded="true" height="60" name="Read Excel" width="90" x="45" y="75">
<parameter key="excel_file" value="C:\Users\hp\Desktop\tempclusterdel.xls"/>
<parameter key="imported_cell_range" value="A1:A54"/>
<parameter key="first_row_as_names" value="false"/>
<list key="annotations">
<parameter key="0" value="Name"/>
</list>
<list key="data_set_meta_data_information">
<parameter key="0" value="Task.true.text.attribute"/>
</list>
</operator>
<operator activated="true" class="generate_id" compatibility="5.1.011" expanded="true" height="76" name="Generate ID" width="90" x="71" y="142"/>
<operator activated="true" class="multiply" compatibility="5.1.011" expanded="true" height="94" name="Multiply" width="90" x="112" y="210"/>
<operator activated="true" class="nominal_to_numerical" compatibility="5.1.011" expanded="true" height="94" name="Nominal to Numerical" width="90" x="179" y="30">
<list key="comparison_groups"/>
</operator>
<operator activated="true" class="multiply" compatibility="5.1.011" expanded="true" height="94" name="Multiply (2)" width="90" x="312" y="94"/>
<operator activated="true" class="k_means" compatibility="5.1.011" expanded="true" height="76" name="Clustering" width="90" x="447" y="75">
<parameter key="k" value="4"/>
</operator>
<operator activated="true" class="join" compatibility="5.1.011" expanded="true" height="76" name="Join" width="90" x="514" y="210">
<list key="key_attributes"/>
</operator>
<connect from_op="Read Excel" from_port="output" to_op="Generate ID" to_port="example set input"/>
<connect from_op="Generate ID" from_port="example set output" to_op="Multiply" to_port="input"/>
<connect from_op="Multiply" from_port="output 1" to_op="Nominal to Numerical" to_port="example set input"/>
<connect from_op="Multiply" from_port="output 2" to_op="Join" to_port="left"/>
<connect from_op="Nominal to Numerical" from_port="example set output" to_op="Multiply (2)" to_port="input"/>
<connect from_op="Multiply (2)" from_port="output 1" to_op="Clustering" to_port="example set"/>
<connect from_op="Multiply (2)" from_port="output 2" to_port="result 3"/>
<connect from_op="Clustering" from_port="cluster model" to_port="result 2"/>
<connect from_op="Clustering" from_port="clustered set" to_op="Join" to_port="right"/>
<connect from_op="Join" from_port="join" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<portSpacing port="sink_result 4" spacing="0"/>
</process>
</operator>
</process>
I have taken sample data as (for general study purpose)
Task
a
a
a
a
f
f
f
f
f
d
d
d
r
r
d
.
.
.
(repeating these characters i.e. "a", "r"," d"," f")
in excel file
and now I am applying kmeans clustering with 4 cluster (as I used 4 characters)
for smaller number of occurrences of "a" "r" "d" "f" when almost evenly distributed it works fine
but when a particular character dominates one cluster becomes empty and others are filled
what should be used in-order to avoid this situation ?
this is what I tried
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.1.011">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.1.011" expanded="true" name="Process">
<process expanded="true" height="396" width="751">
<operator activated="true" class="read_excel" compatibility="5.1.011" expanded="true" height="60" name="Read Excel" width="90" x="45" y="75">
<parameter key="excel_file" value="C:\Users\hp\Desktop\tempclusterdel.xls"/>
<parameter key="imported_cell_range" value="A1:A54"/>
<parameter key="first_row_as_names" value="false"/>
<list key="annotations">
<parameter key="0" value="Name"/>
</list>
<list key="data_set_meta_data_information">
<parameter key="0" value="Task.true.text.attribute"/>
</list>
</operator>
<operator activated="true" class="generate_id" compatibility="5.1.011" expanded="true" height="76" name="Generate ID" width="90" x="71" y="142"/>
<operator activated="true" class="multiply" compatibility="5.1.011" expanded="true" height="94" name="Multiply" width="90" x="112" y="210"/>
<operator activated="true" class="nominal_to_numerical" compatibility="5.1.011" expanded="true" height="94" name="Nominal to Numerical" width="90" x="179" y="30">
<list key="comparison_groups"/>
</operator>
<operator activated="true" class="multiply" compatibility="5.1.011" expanded="true" height="94" name="Multiply (2)" width="90" x="312" y="94"/>
<operator activated="true" class="k_means" compatibility="5.1.011" expanded="true" height="76" name="Clustering" width="90" x="447" y="75">
<parameter key="k" value="4"/>
</operator>
<operator activated="true" class="join" compatibility="5.1.011" expanded="true" height="76" name="Join" width="90" x="514" y="210">
<list key="key_attributes"/>
</operator>
<connect from_op="Read Excel" from_port="output" to_op="Generate ID" to_port="example set input"/>
<connect from_op="Generate ID" from_port="example set output" to_op="Multiply" to_port="input"/>
<connect from_op="Multiply" from_port="output 1" to_op="Nominal to Numerical" to_port="example set input"/>
<connect from_op="Multiply" from_port="output 2" to_op="Join" to_port="left"/>
<connect from_op="Nominal to Numerical" from_port="example set output" to_op="Multiply (2)" to_port="input"/>
<connect from_op="Multiply (2)" from_port="output 1" to_op="Clustering" to_port="example set"/>
<connect from_op="Multiply (2)" from_port="output 2" to_port="result 3"/>
<connect from_op="Clustering" from_port="cluster model" to_port="result 2"/>
<connect from_op="Clustering" from_port="clustered set" to_op="Join" to_port="right"/>
<connect from_op="Join" from_port="join" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<portSpacing port="sink_result 4" spacing="0"/>
</process>
</operator>
</process>
Tagged:
0