Options

Count wordlist occurrences from data

vincentvincent Member Posts: 4 Contributor I
edited November 2018 in Help
Hi,

I want to use rapidminer for sentiment analysis. Currently I am struggling with what I presume is a very simple question, however I am unable to solve it.

I import data from a repository, one of the fields contains text. I also import multiple text files, using 'Process Documents From Files', with different sentiments like: positive and negative. 

As a result i want to have something like this:
Textpostivenegative
This is a bad text01
This is a good text10
The occurrences of positive and negative words from every text entry from the repository.

I currently use this but it does not work:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="6.1.000">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="6.0.002" expanded="true" name="Process">
    <process expanded="true">
      <operator activated="true" class="text:process_document_from_file" compatibility="6.1.000" expanded="true" height="76" name="Process Documents from Files (2)" width="90" x="45" y="210">
        <list key="text_directories">
          <parameter key="Positive" value="/Users/vincent/Documents/uni/Jaar 4/Thesis/Test data/wordlist/pos"/>
          <parameter key="Negative" value="/Users/vincent/Documents/uni/Jaar 4/Thesis/Test data/wordlist/neg"/>
        </list>
        <parameter key="use_file_extension_as_type" value="false"/>
        <parameter key="vector_creation" value="Binary Term Occurrences"/>
        <parameter key="keep_text" value="true"/>
        <process expanded="true">
          <operator activated="true" class="text:transform_cases" compatibility="6.1.000" expanded="true" height="60" name="Transform Cases (4)" width="90" x="45" y="30"/>
          <operator activated="true" class="text:tokenize" compatibility="6.1.000" expanded="true" height="60" name="Tokenize (3)" width="90" x="179" y="30"/>
          <operator activated="true" class="text:filter_stopwords_english" compatibility="6.1.000" expanded="true" height="60" name="Filter Stopwords (3)" width="90" x="313" y="30"/>
          <operator activated="true" class="text:stem_porter" compatibility="6.1.000" expanded="true" height="60" name="Stem (3)" width="90" x="447" y="30"/>
          <connect from_port="document" to_op="Transform Cases (4)" to_port="document"/>
          <connect from_op="Transform Cases (4)" from_port="document" to_op="Tokenize (3)" to_port="document"/>
          <connect from_op="Tokenize (3)" from_port="document" to_op="Filter Stopwords (3)" to_port="document"/>
          <connect from_op="Filter Stopwords (3)" from_port="document" to_op="Stem (3)" to_port="document"/>
          <connect from_op="Stem (3)" from_port="document" to_port="document 1"/>
          <portSpacing port="source_document" spacing="0"/>
          <portSpacing port="sink_document 1" spacing="0"/>
          <portSpacing port="sink_document 2" spacing="0"/>
        </process>
      </operator>
      <operator activated="true" class="retrieve" compatibility="6.1.000" expanded="true" height="60" name="Retrieve wordcount test" width="90" x="45" y="30">
        <parameter key="repository_entry" value="//Template/wordcount test"/>
      </operator>
      <operator activated="true" class="text:process_document_from_data" compatibility="6.1.000" expanded="true" height="76" name="Process Documents from Data" width="90" x="246" y="120">
        <parameter key="vector_creation" value="Term Occurrences"/>
        <parameter key="keep_text" value="true"/>
        <list key="specify_weights"/>
        <process expanded="true">
          <operator activated="true" class="text:transform_cases" compatibility="6.1.000" expanded="true" height="60" name="Transform Cases (3)" width="90" x="45" y="30"/>
          <operator activated="true" class="text:tokenize" compatibility="6.1.000" expanded="true" height="60" name="Tokenize (2)" width="90" x="179" y="30"/>
          <operator activated="true" class="text:stem_porter" compatibility="6.1.000" expanded="true" height="60" name="Stem (2)" width="90" x="313" y="30"/>
          <operator activated="true" class="text:filter_stopwords_english" compatibility="6.1.000" expanded="true" height="60" name="Filter Stopwords (2)" width="90" x="447" y="30"/>
          <connect from_port="document" to_op="Transform Cases (3)" to_port="document"/>
          <connect from_op="Transform Cases (3)" from_port="document" to_op="Tokenize (2)" to_port="document"/>
          <connect from_op="Tokenize (2)" from_port="document" to_op="Stem (2)" to_port="document"/>
          <connect from_op="Stem (2)" from_port="document" to_op="Filter Stopwords (2)" to_port="document"/>
          <connect from_op="Filter Stopwords (2)" from_port="document" to_port="document 1"/>
          <portSpacing port="source_document" spacing="0"/>
          <portSpacing port="sink_document 1" spacing="0"/>
          <portSpacing port="sink_document 2" spacing="0"/>
        </process>
      </operator>
      <connect from_op="Process Documents from Files (2)" from_port="word list" to_op="Process Documents from Data" to_port="word list"/>
      <connect from_op="Retrieve wordcount test" from_port="output" to_op="Process Documents from Data" to_port="example set"/>
      <connect from_op="Process Documents from Data" from_port="example set" to_port="result 1"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
    </process>
  </operator>
</process>
Sorry for the newbie question.

Thank you in advance for helping.

Vincent

Answers

  • Options
    MartinLiebigMartinLiebig Administrator, Moderator, Employee, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,517 RM Data Scientist
    Hi,

    you might want to have a look at this tutorial: http://vancouverdata.blogspot.de/2010/11/text-analytics-with-rapidminer-loading.html

    If it does not help, i can of course give you additional ressources
    - Sr. Director Data Solutions, Altair RapidMiner -
    Dortmund, Germany
  • Options
    vincentvincent Member Posts: 4 Contributor I
    I watched the video's. They were helpful however i could not find my specific problem, am I missing something?
  • Options
    MartinLiebigMartinLiebig Administrator, Moderator, Employee, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,517 RM Data Scientist
    Do you want to do something like this


    Table 1

    ID    Text
    1    acb
    2    def
    3    geh

    and

    Table2

    ID  Sentiment
    1    good
    2    bad
    3  good

    and want to have a combined table? If so, try join on ID
    - Sr. Director Data Solutions, Altair RapidMiner -
    Dortmund, Germany
  • Options
    vincentvincent Member Posts: 4 Contributor I
    No, maybe i was unclear i would like to have this:

    Input files:
    Repository
    text
    This is a good text
    This is a bad text
    The sentiment .txt files (loaded with 'Process documents from files):
    Positive.txt
    good
    great
    awesome

    Negative.txt
    bad
    sad

    Output:
    TextPositiveNegative
    This is a good text10
    This is a bad text01
    Hopefully I have clarified myself a bit more.

    Thank you again for the help
  • Options
    MartinLiebigMartinLiebig Administrator, Moderator, Employee, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,517 RM Data Scientist
    so you want to count the number of occurences of the words in the dictionaries (Positive.txt,negative.txt) in your file?

    If so, have a look here: http://rapid-i.com/rapidforum/index.php/topic,8638.msg29140.html There i do pretty similar stuff.

    This seems somehow a thing some people try to do. I might write a tutorial for this.
    - Sr. Director Data Solutions, Altair RapidMiner -
    Dortmund, Germany
  • Options
    vincentvincent Member Posts: 4 Contributor I
    Sorry for my late reaction.

    I think you understand what i would like to achieve however. I do not see how this is possible with the post you referred me to.

    Do you have a more specific solution?

    Vincent
Sign In or Register to comment.