The Altair Community is migrating to a new platform to provide a better experience for you. The RapidMiner Community will merge with the Altair Community at the same time. In preparation for the migration, both communities are on read-only mode from July 15th - July 24th, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here.

anomaly detection process

fwood201fwood201 Member Posts: 13 Contributor I
edited November 2018 in Help

Hi, I have a question for you experts, i've been using RM a little while now and find it very useful. Im trying to create an anomaly detection process for my final thesis. Based on what I already know in order for an anomaly system to work you need a data source - (KD99 dataset) a preprocessing stage -  (process documents from data with embedded tokenization and transform cases to create TF-IDF word vectors) then a normal profile learning phase (so rule building etc. but not sure what operators would work on this dataset) then finally something to detect the anomalies.

Ive already installed the anomaly detection extensions which as I understand houses a variety of algorithms in it already but am not really sure how to implement its operator i just keep getting errors and its really frustrating. 

For metrics I want to see the rate of false positives and the number of attacks actually detected. The data is labelled normal or attack but i also have just normal unlabelled data as well - every time i use this however it always asks me to put a special attribute in. 


Any help would be greatly appreciated. 


Sign In or Register to comment.