The RapidMiner community is on read-only mode until further notice. Technical support via cases will continue to work as is. For any urgent licensing related requests from Students/Faculty members, please use the Altair academic forum here.

select attributes with at least one entry

sgenzersgenzer Administrator, Moderator, Employee, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM Moderator Posts: 2,959 Community Manager
edited November 2018 in Help

Hi...having a brain freeze with what should be a very simple thing.  I have a data set with 250+ nominal and numerical attributes, many of which are completely empty (all missing values).  Others have perhaps one or two entries with the rest missing.  How do I eliminate all attributes, nominal and numerical, that only have ALL missing values?  I have tried every combination of operators (including Ingo's workaround posted a while ago) to no avail.

 

Scott

Best Answer

  • MartinLiebigMartinLiebig Administrator, Moderator, Employee, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,525 RM Data Scientist
    Solution Accepted

    Hi,

     

    have a look at the attached process. You can filter on >X or <X number of missings.

     

    ~Martin

     

    <?xml version="1.0" encoding="UTF-8"?><process version="7.4.000">
    <context>
    <input/>
    <output/>
    <macros/>
    </context>
    <operator activated="true" class="process" compatibility="7.4.000" expanded="true" name="Process">
    <process expanded="true">
    <operator activated="true" class="retrieve" compatibility="7.4.000" expanded="true" height="68" name="Retrieve Golf" width="90" x="45" y="34">
    <parameter key="repository_entry" value="//Samples/data/Golf"/>
    </operator>
    <operator activated="true" class="generate_attributes" compatibility="7.4.000" expanded="true" height="82" name="Generate Attributes" width="90" x="179" y="34">
    <list key="function_descriptions">
    <parameter key="only_missing" value="str(0/0)"/>
    </list>
    </operator>
    <operator activated="true" class="aggregate" compatibility="7.4.000" expanded="true" height="82" name="Aggregate" width="90" x="380" y="136">
    <parameter key="use_default_aggregation" value="true"/>
    <parameter key="default_aggregation_function" value="count (ignoring missings)"/>
    <list key="aggregation_attributes">
    <parameter key="Wind" value="count (ignoring missings)"/>
    </list>
    </operator>
    <operator activated="true" class="rename_by_replacing" compatibility="7.4.000" expanded="true" height="82" name="Rename by Replacing" width="90" x="514" y="34">
    <parameter key="replace_what" value="countWithOutMissings\((.+)\)"/>
    <parameter key="replace_by" value="$1"/>
    </operator>
    <operator activated="true" class="select_attributes" compatibility="7.4.000" expanded="true" height="82" name="Select Attributes" width="90" x="648" y="34">
    <parameter key="attribute_filter_type" value="numeric_value_filter"/>
    <parameter key="numeric_condition" value="&gt;1"/>
    </operator>
    <operator activated="true" class="data_to_weights" compatibility="7.4.000" expanded="true" height="82" name="Data to Weights" width="90" x="782" y="34"/>
    <operator activated="true" class="select_by_weights" compatibility="7.4.000" expanded="true" height="103" name="Select by Weights" width="90" x="916" y="136"/>
    <connect from_op="Retrieve Golf" from_port="output" to_op="Generate Attributes" to_port="example set input"/>
    <connect from_op="Generate Attributes" from_port="example set output" to_op="Aggregate" to_port="example set input"/>
    <connect from_op="Aggregate" from_port="example set output" to_op="Rename by Replacing" to_port="example set input"/>
    <connect from_op="Aggregate" from_port="original" to_op="Select by Weights" to_port="example set input"/>
    <connect from_op="Rename by Replacing" from_port="example set output" to_op="Select Attributes" to_port="example set input"/>
    <connect from_op="Select Attributes" from_port="example set output" to_op="Data to Weights" to_port="example set"/>
    <connect from_op="Data to Weights" from_port="weights" to_op="Select by Weights" to_port="weights"/>
    <connect from_op="Select by Weights" from_port="example set output" to_port="result 1"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    </process>
    </operator>
    </process>
    - Sr. Director Data Solutions, Altair RapidMiner -
    Dortmund, Germany

Answers

  • Telcontar120Telcontar120 RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 1,635 Unicorn

    Remove Useless Attributes doesn't work on missings?  What if you first run a Replace Missing Values with a constant value and then use it?

     

    Brian T.
    Lindon Ventures 
    Data Science Consulting from Certified RapidMiner Experts
  • sgenzersgenzer Administrator, Moderator, Employee, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM Moderator Posts: 2,959 Community Manager

    that works very nicely.  Thanks, Martin.


    Scott

  • sgenzersgenzer Administrator, Moderator, Employee, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM Moderator Posts: 2,959 Community Manager

    yes tried that for a while.  It does not appear to work because of the mixture of nominal and numerical atts...Martin's solution takes care of that.  :)

Sign In or Register to comment.