The Altair Community is migrating to a new platform to provide a better experience for you. The RapidMiner Community will merge with the Altair Community at the same time. In preparation for the migration, both communities are on read-only mode from July 15th - July 24th, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here.
Options

Doing a qualitative comparison between two models

njmorskieftnjmorskieft Member Posts: 2 Contributor I
edited November 2018 in Help

Hello,

 

I am trying to do a qualitative comparison between two different models (same type of model, namely naïve bayes) but different input attributs. Now I want to check the difference in predictions between the models and then plot the distribution of those disagreements between the models. Is there an easy way to do this in RapidMiner?

 

So far I have tried different techniques like join, append, but those are all not what I want. 

 

I have included the XML code of my process.

 

<?xml version="1.0" encoding="UTF-8"?><process version="8.0.001">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="8.0.001" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="8.0.001" expanded="true" height="68" name="Retrieve speed_dating_assignment_processed" width="90" x="45" y="85">
<parameter key="repository_entry" value="../data/speed_dating_assignment_processed"/>
</operator>
<operator activated="true" class="remove_attribute_range" compatibility="8.0.001" expanded="true" height="82" name="Delete useless attr" width="90" x="45" y="187">
<parameter key="first_attribute" value="78"/>
<parameter key="last_attribute" value="174"/>
</operator>
<operator activated="true" class="select_attributes" compatibility="8.0.001" expanded="true" height="82" name="Delete attr with too much data" width="90" x="45" y="340">
<parameter key="attribute_filter_type" value="subset"/>
<parameter key="attribute" value="match"/>
<parameter key="attributes" value="|match|gender"/>
<parameter key="invert_selection" value="true"/>
</operator>
<operator activated="true" class="split_data" compatibility="8.0.001" expanded="true" height="103" name="Split Data" width="90" x="45" y="493">
<enumeration key="partitions">
<parameter key="ratio" value="0.8"/>
<parameter key="ratio" value="0.2"/>
</enumeration>
<parameter key="use_local_random_seed" value="true"/>
<parameter key="local_random_seed" value="500"/>
</operator>
<operator activated="true" class="select_attributes" compatibility="8.0.001" expanded="true" height="82" name="Delete sensitive attr (2)" width="90" x="179" y="595">
<parameter key="attribute_filter_type" value="subset"/>
<parameter key="attributes" value="race|income|tuition"/>
<parameter key="invert_selection" value="true"/>
</operator>
<operator activated="true" class="select_attributes" compatibility="8.0.001" expanded="true" height="82" name="Delete sensitive attr" width="90" x="179" y="442">
<parameter key="attribute_filter_type" value="subset"/>
<parameter key="attributes" value="race|income|tuition"/>
<parameter key="invert_selection" value="true"/>
</operator>
<operator activated="true" class="naive_bayes" compatibility="8.0.001" expanded="true" height="82" name="Naive Bayes" width="90" x="313" y="442"/>
<operator activated="true" class="apply_model" compatibility="8.0.001" expanded="true" height="82" name="Apply Model (3)" width="90" x="447" y="493">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance" compatibility="8.0.001" expanded="true" height="82" name="Perf. No sensitive" width="90" x="581" y="493"/>
<operator activated="true" class="naive_bayes" compatibility="8.0.001" expanded="true" height="82" name="Naive Bayes (2)" width="90" x="313" y="289"/>
<operator activated="true" class="apply_model" compatibility="8.0.001" expanded="true" height="82" name="Apply Model (2)" width="90" x="447" y="340">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance" compatibility="8.0.001" expanded="true" height="82" name="Perf. With sensitive" width="90" x="581" y="340"/>
<connect from_op="Retrieve speed_dating_assignment_processed" from_port="output" to_op="Delete useless attr" to_port="example set input"/>
<connect from_op="Delete useless attr" from_port="example set output" to_op="Delete attr with too much data" to_port="example set input"/>
<connect from_op="Delete attr with too much data" from_port="example set output" to_op="Split Data" to_port="example set"/>
<connect from_op="Split Data" from_port="partition 1" to_op="Delete sensitive attr" to_port="example set input"/>
<connect from_op="Split Data" from_port="partition 2" to_op="Delete sensitive attr (2)" to_port="example set input"/>
<connect from_op="Delete sensitive attr (2)" from_port="example set output" to_op="Apply Model (3)" to_port="unlabelled data"/>
<connect from_op="Delete sensitive attr (2)" from_port="original" to_op="Apply Model (2)" to_port="unlabelled data"/>
<connect from_op="Delete sensitive attr" from_port="example set output" to_op="Naive Bayes" to_port="training set"/>
<connect from_op="Delete sensitive attr" from_port="original" to_op="Naive Bayes (2)" to_port="training set"/>
<connect from_op="Naive Bayes" from_port="model" to_op="Apply Model (3)" to_port="model"/>
<connect from_op="Apply Model (3)" from_port="labelled data" to_op="Perf. No sensitive" to_port="labelled data"/>
<connect from_op="Naive Bayes (2)" from_port="model" to_op="Apply Model (2)" to_port="model"/>
<connect from_op="Apply Model (2)" from_port="labelled data" to_op="Perf. With sensitive" to_port="labelled data"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
</process>
</operator>
</process>
Tagged:

Best Answer

  • Options
    Telcontar120Telcontar120 Moderator, RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 1,635 Unicorn
    Solution Accepted

    You should be able to save the predictions from the two different models, then rename predictions from one set so they don't have the same names as the other, and then join them together using your id variable.  Once you have them both together, you can use Generate Attributes to create a flag where predictions are different, and then filter the dataset on that and do some exploratory data analysis.

     

     

    Brian T.
    Lindon Ventures 
    Data Science Consulting from Certified RapidMiner Experts

Answers

  • Options
    njmorskieftnjmorskieft Member Posts: 2 Contributor I

    @Telcontar120 wrote:

    You should be able to save the predictions from the two different models, then rename predictions from one set so they don't have the same names as the other, and then join them together using your id variable.  Once you have them both together, you can use Generate Attributes to create a flag where predictions are different, and then filter the dataset on that and do some exploratory data analysis.

     

     


    Thank you! I would like to add something to your answer, the join will filter out the predictions of one model, even after renaming, so you should also change the label (with Set Role) to no longer be a label (prediction) attribute.

  • Options
    Telcontar120Telcontar120 Moderator, RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 1,635 Unicorn

    Correct, I should have mentioned the need to change the role of the 2nd prediction as well as the name.  Good catch!

    Brian T.
    Lindon Ventures 
    Data Science Consulting from Certified RapidMiner Experts
Sign In or Register to comment.