Forward Selection error thrown

NoelNoel Member Posts: 45 Contributor II
edited July 29 in Help
Hi- I'm using the Forward Selection operator for the first time and encountered the error below.

I'm working with time series data, GBTs, and the sliding window validation operator. I'm using the default parameters for the FS operator.

I'm using RM studio 9.2



Tagged:

Best Answer

Answers

  • varunm1varunm1 Member Posts: 727   Unicorn
    Hello @Noel

    Looks like there are no attributes going inside the GBT operator. Can you set a breakpoint before GBT operator (right-click on GBT operator and click breakpoint before) and see if the data going into this operator consists of at least 2 attributes?

    Can you provide your XML code to see the process as well?

    There was an earlier discussion about this in the below thread.
    https://community.rapidminer.com/discussion/55807/running-out-of-features-during-feature-selection#latest
    Tghadially
  • NoelNoel Member Posts: 45 Contributor II
    Thanks, @varunm1. I'm embarrassed to say I don't know why I didn't check that myself. I think I sometimes forget that one can troubleshoot even very complicated tech with basic questions/validations.

    So, apparently three "attributes" are going in, but one is the label and one is the id. 

    Could it be that windowed data was not contemplated when this operator was constructed?

  • varunm1varunm1 Member Posts: 727   Unicorn
    edited July 29
    Actually, this makes sense to me, because forward selection will check each attribute in your dataset first and then the combinations of attributes. This is the principle of how it works. So basically from the screenshot, I can say that the first attribute it is trying is the one "cmbx6_bb_sprd -0". 

    Can you provide XML code if possible? I want to look at the process. I tried with the below sample process and it didn't threw an error and this is a regression problem.

    <?xml version="1.0" encoding="UTF-8"?><process version="9.3.001">
    <context>
    <input/>
    <output/>
    <macros/>
    </context>
    <operator activated="true" class="process" compatibility="9.3.001" expanded="true" name="Process" origin="GENERATED_SAMPLE">
    <parameter key="logverbosity" value="init"/>
    <parameter key="random_seed" value="2001"/>
    <parameter key="send_mail" value="never"/>
    <parameter key="notification_email" value=""/>
    <parameter key="process_duration_for_mail" value="30"/>
    <parameter key="encoding" value="SYSTEM"/>
    <process expanded="true">
    <operator activated="true" class="retrieve" compatibility="9.3.001" expanded="true" height="68" name="Retrieve Prices of Gas Station" origin="GENERATED_SAMPLE" width="90" x="45" y="34">
    <parameter key="repository_entry" value="//Samples/Time Series/data sets/Prices of Gas Station"/>
    </operator>
    <operator activated="true" class="filter_example_range" compatibility="9.3.001" expanded="true" height="82" name="Filter Example Range" origin="GENERATED_SAMPLE" width="90" x="179" y="34">
    <parameter key="first_example" value="1"/>
    <parameter key="last_example" value="16"/>
    <parameter key="invert_filter" value="true"/>
    </operator>
    <operator activated="true" breakpoints="after" class="time_series:windowing" compatibility="9.3.001" expanded="true" height="82" name="Windowing" origin="GENERATED_SAMPLE" width="90" x="447" y="34">
    <parameter key="attribute_filter_type" value="single"/>
    <parameter key="attribute" value="gas price / euro (times 1000)"/>
    <parameter key="attributes" value=""/>
    <parameter key="use_except_expression" value="false"/>
    <parameter key="value_type" value="numeric"/>
    <parameter key="use_value_type_exception" value="false"/>
    <parameter key="except_value_type" value="real"/>
    <parameter key="block_type" value="value_series"/>
    <parameter key="use_block_type_exception" value="false"/>
    <parameter key="except_block_type" value="value_series_end"/>
    <parameter key="invert_selection" value="false"/>
    <parameter key="include_special_attributes" value="false"/>
    <parameter key="has_indices" value="true"/>
    <parameter key="indices_attribute" value="date"/>
    <parameter key="window_size" value="48"/>
    <parameter key="no_overlapping_windows" value="false"/>
    <parameter key="step_size" value="24"/>
    <parameter key="create_horizon_(labels)" value="true"/>
    <parameter key="horizon_attribute" value="gas price / euro (times 1000)"/>
    <parameter key="horizon_size" value="1"/>
    <parameter key="horizon_offset" value="23"/>
    </operator>
    <operator activated="true" class="optimize_selection_forward" compatibility="9.3.001" expanded="true" height="103" name="Forward Selection" width="90" x="581" y="34">
    <parameter key="maximal_number_of_attributes" value="10"/>
    <parameter key="speculative_rounds" value="0"/>
    <parameter key="stopping_behavior" value="without increase"/>
    <parameter key="use_relative_increase" value="true"/>
    <parameter key="alpha" value="0.05"/>
    <process expanded="true">
    <operator activated="true" class="concurrency:cross_validation" compatibility="9.3.001" expanded="true" height="145" name="Cross Validation (2)" width="90" x="313" y="85">
    <parameter key="split_on_batch_attribute" value="false"/>
    <parameter key="leave_one_out" value="false"/>
    <parameter key="number_of_folds" value="5"/>
    <parameter key="sampling_type" value="automatic"/>
    <parameter key="use_local_random_seed" value="false"/>
    <parameter key="local_random_seed" value="1992"/>
    <parameter key="enable_parallel_execution" value="true"/>
    <process expanded="true">
    <operator activated="true" class="h2o:gradient_boosted_trees" compatibility="9.3.001" expanded="true" height="103" name="Gradient Boosted Trees (2)" width="90" x="112" y="34">
    <parameter key="number_of_trees" value="100"/>
    <parameter key="reproducible" value="false"/>
    <parameter key="maximum_number_of_threads" value="4"/>
    <parameter key="use_local_random_seed" value="false"/>
    <parameter key="local_random_seed" value="1992"/>
    <parameter key="maximal_depth" value="10"/>
    <parameter key="min_rows" value="10.0"/>
    <parameter key="min_split_improvement" value="0.0"/>
    <parameter key="number_of_bins" value="20"/>
    <parameter key="learning_rate" value="0.01"/>
    <parameter key="sample_rate" value="1.0"/>
    <parameter key="distribution" value="AUTO"/>
    <parameter key="early_stopping" value="false"/>
    <parameter key="stopping_rounds" value="1"/>
    <parameter key="stopping_metric" value="AUTO"/>
    <parameter key="stopping_tolerance" value="0.001"/>
    <parameter key="max_runtime_seconds" value="0"/>
    <list key="expert_parameters"/>
    </operator>
    <connect from_port="training set" to_op="Gradient Boosted Trees (2)" to_port="training set"/>
    <connect from_op="Gradient Boosted Trees (2)" from_port="model" to_port="model"/>
    <portSpacing port="source_training set" spacing="0"/>
    <portSpacing port="sink_model" spacing="0"/>
    <portSpacing port="sink_through 1" spacing="0"/>
    </process>
    <process expanded="true">
    <operator activated="true" class="apply_model" compatibility="9.3.001" expanded="true" height="82" name="Apply Model (2)" width="90" x="45" y="34">
    <list key="application_parameters"/>
    <parameter key="create_view" value="false"/>
    </operator>
    <operator activated="true" class="performance_regression" compatibility="9.3.001" expanded="true" height="82" name="Performance (2)" width="90" x="246" y="34">
    <parameter key="main_criterion" value="first"/>
    <parameter key="root_mean_squared_error" value="true"/>
    <parameter key="absolute_error" value="false"/>
    <parameter key="relative_error" value="false"/>
    <parameter key="relative_error_lenient" value="false"/>
    <parameter key="relative_error_strict" value="false"/>
    <parameter key="normalized_absolute_error" value="false"/>
    <parameter key="root_relative_squared_error" value="false"/>
    <parameter key="squared_error" value="false"/>
    <parameter key="correlation" value="false"/>
    <parameter key="squared_correlation" value="false"/>
    <parameter key="prediction_average" value="false"/>
    <parameter key="spearman_rho" value="false"/>
    <parameter key="kendall_tau" value="false"/>
    <parameter key="skip_undefined_labels" value="true"/>
    <parameter key="use_example_weights" value="true"/>
    </operator>
    <connect from_port="model" to_op="Apply Model (2)" to_port="model"/>
    <connect from_port="test set" to_op="Apply Model (2)" to_port="unlabelled data"/>
    <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
    <connect from_op="Performance (2)" from_port="performance" to_port="performance 1"/>
    <portSpacing port="source_model" spacing="0"/>
    <portSpacing port="source_test set" spacing="0"/>
    <portSpacing port="source_through 1" spacing="0"/>
    <portSpacing port="sink_test set results" spacing="0"/>
    <portSpacing port="sink_performance 1" spacing="0"/>
    <portSpacing port="sink_performance 2" spacing="0"/>
    </process>
    </operator>
    <connect from_port="example set" to_op="Cross Validation (2)" to_port="example set"/>
    <connect from_op="Cross Validation (2)" from_port="performance 1" to_port="performance"/>
    <portSpacing port="source_example set" spacing="0"/>
    <portSpacing port="sink_performance" spacing="0"/>
    </process>
    </operator>
    <operator activated="true" class="concurrency:cross_validation" compatibility="9.3.001" expanded="true" height="145" name="Cross Validation" origin="GENERATED_SAMPLE" width="90" x="782" y="34">
    <parameter key="split_on_batch_attribute" value="false"/>
    <parameter key="leave_one_out" value="false"/>
    <parameter key="number_of_folds" value="10"/>
    <parameter key="sampling_type" value="automatic"/>
    <parameter key="use_local_random_seed" value="false"/>
    <parameter key="local_random_seed" value="1992"/>
    <parameter key="enable_parallel_execution" value="true"/>
    <process expanded="true">
    <operator activated="true" class="h2o:gradient_boosted_trees" compatibility="9.3.001" expanded="true" height="103" name="Gradient Boosted Trees" origin="GENERATED_SAMPLE" width="90" x="179" y="34">
    <parameter key="number_of_trees" value="100"/>
    <parameter key="reproducible" value="false"/>
    <parameter key="maximum_number_of_threads" value="4"/>
    <parameter key="use_local_random_seed" value="false"/>
    <parameter key="local_random_seed" value="1992"/>
    <parameter key="maximal_depth" value="5"/>
    <parameter key="min_rows" value="10.0"/>
    <parameter key="min_split_improvement" value="0.0"/>
    <parameter key="number_of_bins" value="20"/>
    <parameter key="learning_rate" value="0.1"/>
    <parameter key="sample_rate" value="1.0"/>
    <parameter key="distribution" value="AUTO"/>
    <parameter key="early_stopping" value="false"/>
    <parameter key="stopping_rounds" value="1"/>
    <parameter key="stopping_metric" value="AUTO"/>
    <parameter key="stopping_tolerance" value="0.001"/>
    <parameter key="max_runtime_seconds" value="0"/>
    <list key="expert_parameters"/>
    </operator>
    <connect from_port="training set" to_op="Gradient Boosted Trees" to_port="training set"/>
    <connect from_op="Gradient Boosted Trees" from_port="model" to_port="model"/>
    <portSpacing port="source_training set" spacing="0"/>
    <portSpacing port="sink_model" spacing="0"/>
    <portSpacing port="sink_through 1" spacing="0"/>
    </process>
    <process expanded="true">
    <operator activated="true" class="apply_model" compatibility="9.3.001" expanded="true" height="82" name="Apply Model" origin="GENERATED_SAMPLE" width="90" x="45" y="34">
    <list key="application_parameters"/>
    <parameter key="create_view" value="false"/>
    </operator>
    <operator activated="true" class="performance_regression" compatibility="9.3.001" expanded="true" height="82" name="Performance" origin="GENERATED_SAMPLE" width="90" x="246" y="34">
    <parameter key="main_criterion" value="first"/>
    <parameter key="root_mean_squared_error" value="true"/>
    <parameter key="absolute_error" value="false"/>
    <parameter key="relative_error" value="true"/>
    <parameter key="relative_error_lenient" value="false"/>
    <parameter key="relative_error_strict" value="false"/>
    <parameter key="normalized_absolute_error" value="false"/>
    <parameter key="root_relative_squared_error" value="false"/>
    <parameter key="squared_error" value="false"/>
    <parameter key="correlation" value="false"/>
    <parameter key="squared_correlation" value="false"/>
    <parameter key="prediction_average" value="false"/>
    <parameter key="spearman_rho" value="false"/>
    <parameter key="kendall_tau" value="false"/>
    <parameter key="skip_undefined_labels" value="true"/>
    <parameter key="use_example_weights" value="true"/>
    </operator>
    <connect from_port="model" to_op="Apply Model" to_port="model"/>
    <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
    <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
    <connect from_op="Performance" from_port="performance" to_port="performance 1"/>
    <connect from_op="Performance" from_port="example set" to_port="test set results"/>
    <portSpacing port="source_model" spacing="0"/>
    <portSpacing port="source_test set" spacing="0"/>
    <portSpacing port="source_through 1" spacing="0"/>
    <portSpacing port="sink_test set results" spacing="0"/>
    <portSpacing port="sink_performance 1" spacing="0"/>
    <portSpacing port="sink_performance 2" spacing="0"/>
    </process>
    </operator>
    <connect from_op="Retrieve Prices of Gas Station" from_port="output" to_op="Filter Example Range" to_port="example set input"/>
    <connect from_op="Filter Example Range" from_port="example set output" to_op="Windowing" to_port="example set"/>
    <connect from_op="Windowing" from_port="windowed example set" to_op="Forward Selection" to_port="example set"/>
    <connect from_op="Forward Selection" from_port="example set" to_op="Cross Validation" to_port="example set"/>
    <connect from_op="Cross Validation" from_port="model" to_port="result 1"/>
    <connect from_op="Cross Validation" from_port="example set" to_port="result 2"/>
    <connect from_op="Cross Validation" from_port="test result set" to_port="result 3"/>
    <connect from_op="Cross Validation" from_port="performance 1" to_port="result 4"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    <portSpacing port="sink_result 3" spacing="0"/>
    <portSpacing port="sink_result 4" spacing="0"/>
    <portSpacing port="sink_result 5" spacing="0"/>
    <description align="center" color="blue" colored="true" height="166" resized="true" width="259" x="27" y="130">Retrieve the German gas prices data set from the Samples/Time Series folder.&lt;br&gt;&lt;br&gt;Remove the first 16 Examples, so that the remaining Examples starts at 9:00 AM</description>
    <description align="center" color="green" colored="true" height="427" resized="true" width="366" x="313" y="130">Perform a Windowing on the data set.&lt;br&gt;&lt;br&gt;The window size is set to 48, to include the prices of the previous 48 hours for each window.&lt;br&gt;&lt;br&gt;The step size is set to 24, so that we only look at windows which ends at 8:00 AM.&lt;br&gt;&lt;br&gt;The horizon size is set to 1, cause we want to forecast 1 price.&lt;br&gt;&lt;br&gt;The horizon offset is set to 23, so that the horizon is 23+1 hours after the window, hence the gas price of the next day at the same time.&lt;br&gt;&lt;br&gt;The resulting ExampleSet contains all we need to train any machine learning model on it. A label (the price of the next day, (gas price / euro cents (times 1000) + 24 (horizon); 48 Attributes containing the prices of the last 48 hours (gas price / euro cents (times 1000) - i) and a special attribute holding the last date in window, which is not used in the training).</description>
    <description align="center" color="yellow" colored="false" height="91" resized="true" width="230" x="703" y="198">Train a Gradient Boosted Tree on the ExampleSet created by the Windowing operator.</description>
    </process>
    </operator>
    </process>

    Tghadially
  • NoelNoel Member Posts: 45 Contributor II
    @varunm1- See attached. Have fun ;)
  • varunm1varunm1 Member Posts: 727   Unicorn
    Thanks for sharing, Is it possible to share some sample data for this process either here or in a private message, I will try to recreate the error. 
    Tghadially
  • NoelNoel Member Posts: 45 Contributor II
    Thank you, @varunm1!
    Tghadially
  • NoelNoel Member Posts: 45 Contributor II
    @varunm1 -

    I totally spaced on the sample data thing, my bad! Let me see if I can dig some up.

    Tghadially
  • varunm1varunm1 Member Posts: 727   Unicorn
    Hello @Noel

    No worries. I am getting same error in my process for forward selection with GBT and logistic regression as well. I think H20 should resolve this asap.


    Tghadially
Sign In or Register to comment.