Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.

Can i combine two algorithm for example naive bayes with c.45

Echo1Echo1 Member Posts: 2 Learner I
edited May 2020 in Help
What operator that i need??

Answers

  • MartinLiebigMartinLiebig Administrator, Moderator, Employee, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,525 RM Data Scientist
    Hi
    Stacking or Vote are two operators you may want to use.
    Best,
    Martin
    - Sr. Director Data Solutions, Altair RapidMiner -
    Dortmund, Germany
  • Echo1Echo1 Member Posts: 2 Learner I
    Mr mschmitz can you explain the step? Is read excel=>split data=>algorithms=>stack or vote=>apply model=>performance true? Or i miss the step??
  • lionelderkrikorlionelderkrikor RapidMiner Certified Analyst, Member Posts: 1,195 Unicorn
    Hi @Echo1,

    Here an example of process using Vote operator inside a Split Validation operator. (it is the tutorial process of Vote operator)

    Hope this helps,

    Regards,

    Lionel

    <?xml version="1.0" encoding="UTF-8"?><process version="9.5.000">
      <context>
        <input/>
        <output/>
        <macros/>
      </context>
      <operator activated="true" class="process" compatibility="9.4.000" expanded="true" name="Process" origin="GENERATED_TUTORIAL">
        <parameter key="logverbosity" value="init"/>
        <parameter key="random_seed" value="2001"/>
        <parameter key="send_mail" value="never"/>
        <parameter key="notification_email" value=""/>
        <parameter key="process_duration_for_mail" value="30"/>
        <parameter key="encoding" value="SYSTEM"/>
        <process expanded="true">
          <operator activated="true" class="retrieve" compatibility="9.5.000" expanded="true" height="68" name="Sonar" origin="GENERATED_TUTORIAL" width="90" x="45" y="34">
            <parameter key="repository_entry" value="//Samples/data/Sonar"/>
          </operator>
          <operator activated="true" class="split_validation" compatibility="9.5.000" expanded="true" height="124" name="Validation" origin="GENERATED_TUTORIAL" width="90" x="246" y="34">
            <parameter key="create_complete_model" value="false"/>
            <parameter key="split" value="relative"/>
            <parameter key="split_ratio" value="0.7"/>
            <parameter key="training_set_size" value="100"/>
            <parameter key="test_set_size" value="-1"/>
            <parameter key="sampling_type" value="automatic"/>
            <parameter key="use_local_random_seed" value="false"/>
            <parameter key="local_random_seed" value="1992"/>
            <process expanded="true">
              <operator activated="true" class="vote" compatibility="9.5.000" expanded="true" height="68" name="Vote" origin="GENERATED_TUTORIAL" width="90" x="112" y="34">
                <process expanded="true">
                  <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.4.000" expanded="true" height="103" name="Decision Tree" origin="GENERATED_TUTORIAL" width="90" x="313" y="34">
                    <parameter key="criterion" value="gain_ratio"/>
                    <parameter key="maximal_depth" value="20"/>
                    <parameter key="apply_pruning" value="true"/>
                    <parameter key="confidence" value="0.25"/>
                    <parameter key="apply_prepruning" value="true"/>
                    <parameter key="minimal_gain" value="0.1"/>
                    <parameter key="minimal_leaf_size" value="2"/>
                    <parameter key="minimal_size_for_split" value="4"/>
                    <parameter key="number_of_prepruning_alternatives" value="3"/>
                  </operator>
                  <operator activated="true" class="neural_net" compatibility="9.5.000" expanded="true" height="82" name="Neural Net" origin="GENERATED_TUTORIAL" width="90" x="313" y="187">
                    <list key="hidden_layers"/>
                    <parameter key="training_cycles" value="500"/>
                    <parameter key="learning_rate" value="0.3"/>
                    <parameter key="momentum" value="0.2"/>
                    <parameter key="decay" value="false"/>
                    <parameter key="shuffle" value="true"/>
                    <parameter key="normalize" value="true"/>
                    <parameter key="error_epsilon" value="1.0E-5"/>
                    <parameter key="use_local_random_seed" value="false"/>
                    <parameter key="local_random_seed" value="1992"/>
                  </operator>
                  <operator activated="true" class="support_vector_machine" compatibility="9.5.000" expanded="true" height="124" name="SVM" origin="GENERATED_TUTORIAL" width="90" x="313" y="289">
                    <parameter key="kernel_type" value="dot"/>
                    <parameter key="kernel_gamma" value="1.0"/>
                    <parameter key="kernel_sigma1" value="1.0"/>
                    <parameter key="kernel_sigma2" value="0.0"/>
                    <parameter key="kernel_sigma3" value="2.0"/>
                    <parameter key="kernel_shift" value="1.0"/>
                    <parameter key="kernel_degree" value="2.0"/>
                    <parameter key="kernel_a" value="1.0"/>
                    <parameter key="kernel_b" value="0.0"/>
                    <parameter key="kernel_cache" value="200"/>
                    <parameter key="C" value="0.0"/>
                    <parameter key="convergence_epsilon" value="0.001"/>
                    <parameter key="max_iterations" value="100000"/>
                    <parameter key="scale" value="true"/>
                    <parameter key="calculate_weights" value="true"/>
                    <parameter key="return_optimization_performance" value="true"/>
                    <parameter key="L_pos" value="1.0"/>
                    <parameter key="L_neg" value="1.0"/>
                    <parameter key="epsilon" value="0.0"/>
                    <parameter key="epsilon_plus" value="0.0"/>
                    <parameter key="epsilon_minus" value="0.0"/>
                    <parameter key="balance_cost" value="false"/>
                    <parameter key="quadratic_loss_pos" value="false"/>
                    <parameter key="quadratic_loss_neg" value="false"/>
                    <parameter key="estimate_performance" value="false"/>
                  </operator>
                  <connect from_port="training set 1" to_op="Decision Tree" to_port="training set"/>
                  <connect from_port="training set 2" to_op="Neural Net" to_port="training set"/>
                  <connect from_port="training set 3" to_op="SVM" to_port="training set"/>
                  <connect from_op="Decision Tree" from_port="model" to_port="base model 1"/>
                  <connect from_op="Neural Net" from_port="model" to_port="base model 2"/>
                  <connect from_op="SVM" from_port="model" to_port="base model 3"/>
                  <portSpacing port="source_training set 1" spacing="0"/>
                  <portSpacing port="source_training set 2" spacing="72"/>
                  <portSpacing port="source_training set 3" spacing="72"/>
                  <portSpacing port="source_training set 4" spacing="0"/>
                  <portSpacing port="sink_base model 1" spacing="0"/>
                  <portSpacing port="sink_base model 2" spacing="72"/>
                  <portSpacing port="sink_base model 3" spacing="72"/>
                  <portSpacing port="sink_base model 4" spacing="0"/>
                </process>
              </operator>
              <connect from_port="training" to_op="Vote" to_port="training set"/>
              <connect from_op="Vote" from_port="model" to_port="model"/>
              <portSpacing port="source_training" spacing="0"/>
              <portSpacing port="sink_model" spacing="0"/>
              <portSpacing port="sink_through 1" spacing="0"/>
            </process>
            <process expanded="true">
              <operator activated="true" class="apply_model" compatibility="9.5.000" expanded="true" height="82" name="Apply Model" origin="GENERATED_TUTORIAL" width="90" x="45" y="34">
                <list key="application_parameters"/>
                <parameter key="create_view" value="false"/>
              </operator>
              <operator activated="true" class="performance" compatibility="9.5.000" expanded="true" height="82" name="Performance" origin="GENERATED_TUTORIAL" width="90" x="179" y="34">
                <parameter key="use_example_weights" value="true"/>
              </operator>
              <connect from_port="model" to_op="Apply Model" to_port="model"/>
              <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
              <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
              <connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
              <portSpacing port="source_model" spacing="0"/>
              <portSpacing port="source_test set" spacing="0"/>
              <portSpacing port="source_through 1" spacing="0"/>
              <portSpacing port="sink_averagable 1" spacing="0"/>
              <portSpacing port="sink_averagable 2" spacing="0"/>
            </process>
          </operator>
          <connect from_op="Sonar" from_port="output" to_op="Validation" to_port="training"/>
          <connect from_op="Validation" from_port="model" to_port="result 1"/>
          <connect from_op="Validation" from_port="training" to_port="result 3"/>
          <connect from_op="Validation" from_port="averagable 1" to_port="result 2"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_result 1" spacing="0"/>
          <portSpacing port="sink_result 2" spacing="42"/>
          <portSpacing port="sink_result 3" spacing="66"/>
          <portSpacing port="sink_result 4" spacing="0"/>
        </process>
      </operator>
    </process>
    


Sign In or Register to comment.