Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.

Create a line in the graph

alois_borgognonalois_borgognon Member Posts: 15 Contributor II
Hello,

I made a prediction price model and I would like to, in my graph in visualizations part of an exampleset generate , create a line when the price prediction is equal to the real price or, in a nutshell when x = y.

How can we do that ?

Thanks a lot for your answer

Best Answer

Answers

  • yyhuangyyhuang Administrator, Employee, RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 364 RM Data Scientist

    Do you mean the linear interpolation between the label and prediction?

    <?xml version="1.0" encoding="UTF-8"?><process version="9.5.001"><br>  <context><br>    <input/><br>    <output/><br>    <macros/><br>  </context><br>  <operator activated="true" class="process" compatibility="9.5.001" expanded="true" name="Process"><br>    <parameter key="logverbosity" value="init"/><br>    <parameter key="random_seed" value="2001"/><br>    <parameter key="send_mail" value="never"/><br>    <parameter key="notification_email" value="yhuang@rapidminer.com"/><br>    <parameter key="process_duration_for_mail" value="1"/><br>    <parameter key="encoding" value="SYSTEM"/><br>    <process expanded="true"><br>      <operator activated="true" class="retrieve" compatibility="9.5.001" expanded="true" height="68" name="Retrieve Polynomial" width="90" x="112" y="85"><br>        <parameter key="repository_entry" value="//Samples/data/Polynomial"/><br>      </operator><br>      <operator activated="true" class="h2o:generalized_linear_model" compatibility="9.3.001" expanded="true" height="124" name="Generalized Linear Model" width="90" x="246" y="85"><br>        <parameter key="family" value="AUTO"/><br>        <parameter key="link" value="family_default"/><br>        <parameter key="solver" value="AUTO"/><br>        <parameter key="reproducible" value="false"/><br>        <parameter key="maximum_number_of_threads" value="4"/><br>        <parameter key="use_regularization" value="false"/><br>        <parameter key="lambda_search" value="false"/><br>        <parameter key="number_of_lambdas" value="0"/><br>        <parameter key="lambda_min_ratio" value="0.0"/><br>        <parameter key="early_stopping" value="true"/><br>        <parameter key="stopping_rounds" value="3"/><br>        <parameter key="stopping_tolerance" value="0.001"/><br>        <parameter key="standardize" value="true"/><br>        <parameter key="non-negative_coefficients" value="false"/><br>        <parameter key="add_intercept" value="true"/><br>        <parameter key="compute_p-values" value="false"/><br>        <parameter key="remove_collinear_columns" value="false"/><br>        <parameter key="missing_values_handling" value="MeanImputation"/><br>        <parameter key="max_iterations" value="0"/><br>        <parameter key="specify_beta_constraints" value="false"/><br>        <list key="beta_constraints"/><br>        <parameter key="max_runtime_seconds" value="0"/><br>        <list key="expert_parameters"/><br>      </operator><br>      <operator activated="true" class="apply_model" compatibility="9.5.001" expanded="true" height="82" name="Apply Model" width="90" x="380" y="85"><br>        <list key="application_parameters"/><br>        <parameter key="create_view" value="false"/><br>      </operator><br>      <connect from_op="Retrieve Polynomial" from_port="output" to_op="Generalized Linear Model" to_port="training set"/><br>      <connect from_op="Generalized Linear Model" from_port="model" to_op="Apply Model" to_port="model"/><br>      <connect from_op="Generalized Linear Model" from_port="exampleSet" to_op="Apply Model" to_port="unlabelled data"/><br>      <connect from_op="Apply Model" from_port="labelled data" to_port="result 1"/><br>      <portSpacing port="source_input 1" spacing="0"/><br>      <portSpacing port="sink_result 1" spacing="0"/><br>      <portSpacing port="sink_result 2" spacing="0"/><br>    </process><br>  </operator><br></process><br><br>


Sign In or Register to comment.