RapidMiner 9.7 is Now Available

Lots of amazing new improvements including true version control! Learn more about what's new here.

CLICK HERE TO DOWNLOAD

Logistic Regression Wald test

Mori111Mori111 Member, University Professor Posts: 5  University Professor
edited March 1 in Help
I cannot find which performance operator gives me the wald test for logistic regression 
Tagged:
Jasmine_

Answers

  • yyhuangyyhuang Administrator, Employee, RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 273  RM Data Scientist
    Hi @Mori111,

    Do you want to compute p-value for the significance of the factors in Logistic Regression? Just check the box and enable it in GLM or Log Regression operator.


    <?xml version="1.0" encoding="UTF-8"?><process version="9.6.000">
      <context>
        <input/>
        <output/>
        <macros/>
      </context>
      <operator activated="true" class="process" compatibility="9.4.000" expanded="true" name="Process" origin="GENERATED_TUTORIAL">
        <parameter key="logverbosity" value="init"/>
        <parameter key="random_seed" value="2001"/>
        <parameter key="send_mail" value="never"/>
        <parameter key="notification_email" value=""/>
        <parameter key="process_duration_for_mail" value="30"/>
        <parameter key="encoding" value="SYSTEM"/>
        <process expanded="true">
          <operator activated="true" class="retrieve" compatibility="9.6.000" expanded="true" height="68" name="Retrieve Deals" origin="GENERATED_TUTORIAL" width="90" x="45" y="34">
            <parameter key="repository_entry" value="//Samples/data/Deals"/>
          </operator>
          <operator activated="true" class="h2o:logistic_regression" compatibility="9.3.001" expanded="true" height="124" name="Logistic Regression" origin="GENERATED_TUTORIAL" width="90" x="179" y="34">
            <parameter key="solver" value="AUTO"/>
            <parameter key="reproducible" value="true"/>
            <parameter key="maximum_number_of_threads" value="4"/>
            <parameter key="use_regularization" value="false"/>
            <parameter key="lambda_search" value="false"/>
            <parameter key="number_of_lambdas" value="0"/>
            <parameter key="lambda_min_ratio" value="0.0"/>
            <parameter key="early_stopping" value="true"/>
            <parameter key="stopping_rounds" value="3"/>
            <parameter key="stopping_tolerance" value="0.001"/>
            <parameter key="standardize" value="true"/>
            <parameter key="non-negative_coefficients" value="false"/>
            <parameter key="add_intercept" value="true"/>
            <parameter key="compute_p-values" value="true"/>
            <parameter key="remove_collinear_columns" value="true"/>
            <parameter key="missing_values_handling" value="MeanImputation"/>
            <parameter key="max_iterations" value="0"/>
            <parameter key="max_runtime_seconds" value="0"/>
          </operator>
          <operator activated="true" class="retrieve" compatibility="9.6.000" expanded="true" height="68" name="Retrieve Sonar" width="90" x="45" y="238">
            <parameter key="repository_entry" value="//Samples/data/Sonar"/>
          </operator>
          <operator activated="true" class="h2o:logistic_regression" compatibility="9.3.001" expanded="true" height="124" name="Logistic Regression (2)" origin="GENERATED_TUTORIAL" width="90" x="179" y="238">
            <parameter key="solver" value="AUTO"/>
            <parameter key="reproducible" value="true"/>
            <parameter key="maximum_number_of_threads" value="4"/>
            <parameter key="use_regularization" value="false"/>
            <parameter key="lambda_search" value="false"/>
            <parameter key="number_of_lambdas" value="0"/>
            <parameter key="lambda_min_ratio" value="0.0"/>
            <parameter key="early_stopping" value="true"/>
            <parameter key="stopping_rounds" value="3"/>
            <parameter key="stopping_tolerance" value="0.001"/>
            <parameter key="standardize" value="true"/>
            <parameter key="non-negative_coefficients" value="false"/>
            <parameter key="add_intercept" value="true"/>
            <parameter key="compute_p-values" value="true"/>
            <parameter key="remove_collinear_columns" value="true"/>
            <parameter key="missing_values_handling" value="MeanImputation"/>
            <parameter key="max_iterations" value="0"/>
            <parameter key="max_runtime_seconds" value="0"/>
          </operator>
          <connect from_op="Retrieve Deals" from_port="output" to_op="Logistic Regression" to_port="training set"/>
          <connect from_op="Logistic Regression" from_port="model" to_port="result 1"/>
          <connect from_op="Retrieve Sonar" from_port="output" to_op="Logistic Regression (2)" to_port="training set"/>
          <connect from_op="Logistic Regression (2)" from_port="model" to_port="result 2"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_result 1" spacing="0"/>
          <portSpacing port="sink_result 2" spacing="0"/>
          <portSpacing port="sink_result 3" spacing="0"/>
        </process>
      </operator>
    </process>
    




    Cheers,
    YY
    varunm1Mori111sgenzerJasmine_
  • Mori111Mori111 Member, University Professor Posts: 5  University Professor
    Thanks so much!
    Jasmine_
Sign In or Register to comment.