Due to recent updates, all users are required to create an Altair One account to login to the RapidMiner community. Click the Register button to create your account using the same email that you have previously used to login to the RapidMiner community. This will ensure that any previously created content will be synced to your Altair One account. Once you login, you will be asked to provide a username that identifies you to other Community users. Email us at Community with questions.
Remove correlated features from training set and apply the same features to test set
Hello all,
I just wondering how you achieve to remove pairwise correlated features from your training set (using the Remove Correlated Attributes operator) and apply the same features to your test set? If I should compare this operation to something I think about the "Apply feature set" (as exists for the features selection operator) or somewhat OHE and the Preprocessing model output. See screenshot below of the process. I have normally these two training and test preprocessing operations in two different processes.
Thanks for your help.
Tagged:
0
Best Answers
-
MartinLiebig Administrator, Moderator, Employee, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,527 RM Data ScientistHi @Andy3,you usually don't need to do it. Keep in mind that Apply Model is ignoring additional attributes.Best,Martin- Sr. Director Data Solutions, Altair RapidMiner -
Dortmund, Germany5 -
MartinLiebig Administrator, Moderator, Employee, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,527 RM Data ScientistHi @Andy3 ,if you need to do it, you can use Data to Weights for it. Attached is an example.BR,Martin<?xml version="1.0" encoding="UTF-8"?><process version="9.6.000">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="9.6.000" expanded="true" name="Process">
<parameter key="logverbosity" value="init"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="SYSTEM"/>
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="9.6.000" expanded="true" height="68" name="Retrieve Sonar" width="90" x="45" y="34">
<parameter key="repository_entry" value="//Samples/data/Sonar"/>
</operator>
<operator activated="true" class="select_attributes" compatibility="9.6.000" expanded="true" height="82" name="Select Attributes" width="90" x="179" y="34">
<parameter key="attribute_filter_type" value="single"/>
<parameter key="attribute" value="attribute_1"/>
<parameter key="attributes" value=""/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="attribute_value"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="time"/>
<parameter key="block_type" value="attribute_block"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_matrix_row_start"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
</operator>
<operator activated="true" class="data_to_weights" compatibility="9.6.000" expanded="true" height="82" name="Data to Weights" width="90" x="313" y="34">
<parameter key="normalize_weights" value="false"/>
<parameter key="sort_weights" value="true"/>
<parameter key="sort_direction" value="ascending"/>
</operator>
<operator activated="true" class="retrieve" compatibility="9.6.000" expanded="true" height="68" name="Retrieve Sonar (2)" width="90" x="45" y="238">
<parameter key="repository_entry" value="//Samples/data/Sonar"/>
</operator>
<operator activated="true" class="select_by_weights" compatibility="9.6.000" expanded="true" height="103" name="Select by Weights" width="90" x="514" y="136">
<parameter key="weight_relation" value="greater equals"/>
<parameter key="weight" value="1.0"/>
<parameter key="k" value="10"/>
<parameter key="p" value="0.5"/>
<parameter key="deselect_unknown" value="true"/>
<parameter key="use_absolute_weights" value="true"/>
</operator>
<connect from_op="Retrieve Sonar" from_port="output" to_op="Select Attributes" to_port="example set input"/>
<connect from_op="Select Attributes" from_port="example set output" to_op="Data to Weights" to_port="example set"/>
<connect from_op="Data to Weights" from_port="weights" to_op="Select by Weights" to_port="weights"/>
<connect from_op="Retrieve Sonar (2)" from_port="output" to_op="Select by Weights" to_port="example set input"/>
<connect from_op="Select by Weights" from_port="example set output" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>
- Sr. Director Data Solutions, Altair RapidMiner -
Dortmund, Germany2
Answers