Beginner question regarding train / test set

Bella0812Bella0812 Member Posts: 2 Learner I
edited February 20 in Help

First of all: I am a total beginner in data science. For my university project, I need to create a process in rapidminer which predicts a customer satisfaction based on a survey. The dataset can be obtained from kaggle by searching for "Airline Passenger Satisfaction" by TJ Klein (cannot post links yet).

I get a train and a test set. I build my process based on the train set. so currently my process looks like this:

<?xml version="1.0" encoding="UTF-8"?><process version="10.3.001">  
<operator activated="true" class="process" compatibility="10.3.001" expanded="true" name="Process">
<parameter key="logverbosity" value="init"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="SYSTEM"/>
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="10.3.001" expanded="true" height="68" name="Train Set" width="90" x="45" y="136">
<parameter key="repository_entry" value="train"/>
<operator activated="true" class="subprocess" compatibility="10.3.001" expanded="true" height="82" name="Data Preparation" width="90" x="179" y="136">
<process expanded="true">
<operator activated="true" class="blending:select_attributes" compatibility="10.3.001" expanded="true" height="82" name="Select Attributes" width="90" x="45" y="34">
<parameter key="type" value="exclude attributes"/>
<parameter key="attribute_filter_type" value="a subset"/>
<parameter key="select_attribute" value=""/>
<parameter key="select_subset" value="att1␞id"/>
<parameter key="also_apply_to_special_attributes_(id,_label..)" value="false"/>
<operator activated="true" class="filter_examples" compatibility="10.3.001" expanded="true" height="103" name="Filter Examples" width="90" x="246" y="34">
<parameter key="parameter_expression" value=""/>
<parameter key="condition_class" value="custom_filters"/>
<parameter key="invert_filter" value="true"/>
<list key="filters_list">
<parameter key="filters_entry_key" value="Arrival Delay in Minutes.is_missing."/>
<parameter key="filters_logic_and" value="true"/>
<parameter key="filters_check_metadata" value="true"/>
<operator activated="true" class="blending:rename" compatibility="10.3.001" expanded="true" height="82" name="Rename" width="90" x="447" y="34">
<list key="rename attributes">
<parameter key="On-board service" value="boarding service"/>
<parameter key="from_attribute" value=""/>
<parameter key="to_attribute" value=""/>
<operator activated="true" class="blending:set_role" compatibility="10.3.001" expanded="true" height="82" name="Set Role" width="90" x="648" y="34">
<list key="set_roles">
<parameter key="satisfaction" value="label"/>
<connect from_port="in 1" to_op="Select Attributes" to_port="example set input"/>
<connect from_op="Select Attributes" from_port="example set output" to_op="Filter Examples" to_port="example set input"/>
<connect from_op="Filter Examples" from_port="example set output" to_op="Rename" to_port="example set input"/>
<connect from_op="Rename" from_port="example set output" to_op="Set Role" to_port="example set input"/>
<connect from_op="Set Role" from_port="example set output" to_port="out 1"/>
<portSpacing port="source_in 1" spacing="0"/>
<portSpacing port="source_in 2" spacing="0"/>
<portSpacing port="sink_out 1" spacing="0"/>
<portSpacing port="sink_out 2" spacing="0"/>
<operator activated="true" class="concurrency:cross_validation" compatibility="10.3.001" expanded="true" height="145" name="Cross Validation" width="90" x="380" y="136">
<parameter key="split_on_batch_attribute" value="false"/>
<parameter key="leave_one_out" value="false"/>
<parameter key="number_of_folds" value="9"/>
<parameter key="sampling_type" value="linear sampling"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
<parameter key="enable_parallel_execution" value="true"/>
<process expanded="true">
<operator activated="true" class="concurrency:parallel_decision_tree" compatibility="10.3.001" expanded="true" height="103" name="Decision Tree" width="90" x="112" y="34">
<parameter key="criterion" value="information_gain"/>
<parameter key="maximal_depth" value="20"/>
<parameter key="apply_pruning" value="true"/>
<parameter key="confidence" value="0.1"/>
<parameter key="apply_prepruning" value="true"/>
<parameter key="minimal_gain" value="0.01"/>
<parameter key="minimal_leaf_size" value="2"/>
<parameter key="minimal_size_for_split" value="4"/>
<parameter key="number_of_prepruning_alternatives" value="3"/>
<connect from_port="training set" to_op="Decision Tree" to_port="training set"/>
<connect from_op="Decision Tree" from_port="model" to_port="model"/>
<connect from_op="Decision Tree" from_port="exampleSet" to_port="through 1"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
<portSpacing port="sink_through 2" spacing="0"/>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="10.3.001" expanded="true" height="82" name="Apply Model" width="90" x="112" y="34">
<list key="application_parameters"/>
<operator activated="true" class="performance_classification" compatibility="10.3.001" expanded="true" height="82" name="Performance" width="90" x="313" y="34">
<parameter key="main_criterion" value="first"/>
<parameter key="accuracy" value="true"/>
<parameter key="classification_error" value="true"/>
<parameter key="kappa" value="false"/>
<parameter key="weighted_mean_recall" value="false"/>
<parameter key="weighted_mean_precision" value="false"/>
<parameter key="spearman_rho" value="false"/>
<parameter key="kendall_tau" value="false"/>
<parameter key="absolute_error" value="false"/>
<parameter key="relative_error" value="false"/>
<parameter key="relative_error_lenient" value="false"/>
<parameter key="relative_error_strict" value="false"/>
<parameter key="normalized_absolute_error" value="false"/>
<parameter key="root_mean_squared_error" value="false"/>
<parameter key="root_relative_squared_error" value="false"/>
<parameter key="squared_error" value="false"/>
<parameter key="correlation" value="false"/>
<parameter key="squared_correlation" value="false"/>
<parameter key="cross-entropy" value="false"/>
<parameter key="margin" value="false"/>
<parameter key="soft_margin_loss" value="false"/>
<parameter key="logistic_loss" value="false"/>
<parameter key="skip_undefined_labels" value="true"/>
<parameter key="use_example_weights" value="true"/>
<list key="class_weights"/>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="performance 1"/>
<connect from_op="Performance" from_port="example set" to_port="test set results"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="source_through 2" spacing="0"/>
<portSpacing port="sink_test set results" spacing="0"/>
<portSpacing port="sink_performance 1" spacing="0"/>
<portSpacing port="sink_performance 2" spacing="0"/>
<connect from_op="Train Set" from_port="output" to_op="Data Preparation" to_port="in 1"/>
<connect from_op="Data Preparation" from_port="out 1" to_op="Cross Validation" to_port="example set"/>
<connect from_op="Cross Validation" from_port="example set" to_port="result 2"/>
<connect from_op="Cross Validation" from_port="test result set" to_port="result 1"/>
<connect from_op="Cross Validation" from_port="performance 1" to_port="result 3"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<portSpacing port="sink_result 4" spacing="0"/>
<portSpacing port="sink_result 5" spacing="0"/>
<portSpacing port="sink_result 6" spacing="0"/>

The thing that now confuses me is, where do I use my test set? I don't really now where and I should use it - if I should use it at all. The test set is not unlabeled btw. As it says on kaggle, it was just splitted from the train set and represents 20% of all data.


  • Options
    ceaperezceaperez Member Posts: 522 Unicorn
    Hi @Bella0812,

    You are using the Cross-validation operator in your model. 
    This operator performs the training and validation process in you. Basically, the operator divides the data set into k subsets of equal size, then the operator retains one subset and trains the model on the other k-1 subsets. the process is repeated k times, with a different test subset selected each time. 


  • Options
    Bella0812Bella0812 Member Posts: 2 Learner I
    Thanks for your answer @ceaperez !

    I know how the cross validator works, and thats why I am confused. Do I still need to use the test set which I got in a seperate file, or can i ignore it as the cross validator already did the testing?

  • Options
    ceaperezceaperez Member Posts: 522 Unicorn
    Hi @Bella0812,
    The cross-validation operator performed the tests as mentioned above. In this case, you can use other data sets for validation purposes by using the Apply Model operator. 

Sign In or Register to comment.