The Altair Community is migrating to a new platform to provide a better experience for you. The RapidMiner Community will merge with the Altair Community at the same time. In preparation for the migration, both communities are on read-only mode from July 15th - July 24th, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here.
Options

JSVMLearner with non linear kernel

ilaria_goriilaria_gori Member Posts: 15 Maven
edited November 2018 in Help
Could you explain me why in jSVMLearner with non linear kernel, the vector w is calculated as linear combination of the training vectors, as in case of linear kernel? Why it is not simply given the function value which is sufficient to have the output?
thanks!

ilaria

Answers

  • Options
    haddockhaddock Member Posts: 849 Maven
  • Options
    ilaria_goriilaria_gori Member Posts: 15 Maven
    thanks, but it's a different problem,

    ilaria
  • Options
    landland RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 2,531 Unicorn
    Hi,
    I don't think haddock referred to the question in this topic. I rather believe he points to the solution I recommended: Reading the original paper.

    Greetings,
      Sebastian
  • Options
    ilaria_goriilaria_gori Member Posts: 15 Maven
    thanks, but I already read the paper and in fact I learnt that the vector w should be calculated in another way, that is with phi(x_i) and not with the x_i, as Rapid Miner does.

    ilaria
  • Options
    landland RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 2,531 Unicorn
    Hi,
    that's correct. So where did you see, that w was calculated in the wrong way? Did you see it in the source code or was it displayed within rapid miner?

    Greetings,
      Sebastian
  • Options
    ilaria_goriilaria_gori Member Posts: 15 Maven
    Hi,
    I simply calculated it by myself, in order to see if I had understood the algorithm, and I remarked that Rapid Miner calculates it with the x_i and not with the phi(x_i).  It's not a problem if you use only the confidence as output, but I thought It was interesting to point it out,

    ilaria
  • Options
    haddockhaddock Member Posts: 849 Maven
    G'Day Folks,

    Not sure Ilaria got due credit here for the close work, so let me be the first to commend it to you, top stuff!


  • Options
    landland RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 2,531 Unicorn
    Hi again,
    where exactly is the w shown in RapidMiner? I just want to take a closer look. If I remember correctly, the phi cannot be expressed for any kernel?

    Greetings,
      Sebastian
  • Options
    ilaria_goriilaria_gori Member Posts: 15 Maven
    Hi, you are right, the phi cannot be expressed for all kernels. Probably RM could simply not to give the w, which now is given in the training process output model, because it's not necessary.
    greetings,

    ilaria
Sign In or Register to comment.