🎉 🎉 RAPIDMINER 9.10 IS OUT!!! 🎉🎉

Download the latest version helping analytics teams accelerate time-to-value for streaming and IIOT use cases.

CLICK HERE TO DOWNLOAD

rainfull prediction

oussama_salhi89oussama_salhi89 Member Posts: 3 Contributor I
edited December 2018 in Help

hello

i'm a new user of RapidMiner, i will thinkfull if you help me to know how can i make a weather prediction (rainfull) from a database

Tagged:

Answers

  • lionelderkrikorlionelderkrikor Moderator, RapidMiner Certified Analyst, Member Posts: 1,186   Unicorn

    Hi @oussama_salhi89,

     

    It's difficult to help you without dataset. Can you share an extract of data of your database and explain what exactly you want to predict.

     

    Regards,

     

    Lionel

     

    sgenzer
  • oussama_salhi89oussama_salhi89 Member Posts: 3 Contributor I

    Hi @lionelderkrikor ;

    thank you for replying me 

    this is my database 

    i have the mesure of rainfall since 1979 until 2011 in milimeter the object is to predict the evolution of rainfall in the comming years

    /

    saisons agricole précipitation (mm)
    1979-1980 495,9  
    1980-1981 275,6  
    1981-1982 412,4  
    1982-1983 376,1  
    1983-1984 441,9  
    1984-1985 321,3  
    1985-1986 492,8  
    1986-1987 377,6  
    1987-1988 481,2  
    1988-1989 431,6  
    1989-1990 591,6  
    1990-1991 465,4  
    1991-1992 400,7  
    1992-1993 271,5  
    1993-1994 417  
    1994-1995 309,2  
    1995-1996 772,7  
    1996-1997 718,9  
    1997-1998 436,9  
    1998-1999 280,6  
    1999-2000 319,5  
    2000-2001 339  
    2001-2002 328,2  
    2002-2003 531,3  
    2003-2004 485,1  
    2004-2005 258  
    2005-2006 502,1  
    2006-2007 266,2  
    2007-2008 262,6  
    2008-2009 601,6  
    2009-2010 690,9  
    2010-2011 657,4  

    Regards, 

     

    oussama

     

  • lionelderkrikorlionelderkrikor Moderator, RapidMiner Certified Analyst, Member Posts: 1,186   Unicorn

    Hi again Oussama,

     

    1. Here you can find a process for this time series project : 

    <?xml version="1.0" encoding="UTF-8"?><process version="8.1.000">
    <context>
    <input/>
    <output/>
    <macros>
    <macro>
    <key>futureMonths</key>
    <value>15</value>
    </macro>
    <macro>
    <key>horizon</key>
    <value>1</value>
    </macro>
    <macro>
    <key>windowSize</key>
    <value>6</value>
    </macro>
    </macros>
    </context>
    <operator activated="true" class="process" compatibility="6.0.002" expanded="true" name="Process">
    <process expanded="true">
    <operator activated="true" class="read_excel" compatibility="8.1.000" expanded="true" height="68" name="Read Excel" width="90" x="45" y="85">
    <parameter key="excel_file" value="C:\Users\Lionel\Documents\Formations_DataScience\Rapidminer\Tests_Rapidminer\Precipitations_forecast\Precipitations_forecast.xlsx"/>
    <parameter key="imported_cell_range" value="A1:B33"/>
    <parameter key="first_row_as_names" value="false"/>
    <list key="annotations">
    <parameter key="0" value="Name"/>
    </list>
    <list key="data_set_meta_data_information">
    <parameter key="0" value="Year.true.polynominal.attribute"/>
    <parameter key="1" value="Precipitations.true.numeric.attribute"/>
    </list>
    </operator>
    <operator activated="true" class="subprocess" compatibility="8.1.000" expanded="true" height="82" name="Set Predictions_Params" width="90" x="179" y="85">
    <process expanded="true">
    <operator activated="true" class="set_macro" compatibility="8.1.000" expanded="true" height="82" name="Set Window_Size" width="90" x="45" y="34">
    <parameter key="macro" value="WindowSize"/>
    <parameter key="value" value="10"/>
    </operator>
    <operator activated="true" class="set_macro" compatibility="8.1.000" expanded="true" height="82" name="Set Horizon" width="90" x="179" y="34">
    <parameter key="macro" value="horizon"/>
    <parameter key="value" value="1"/>
    </operator>
    <operator activated="true" class="set_macro" compatibility="8.1.000" expanded="true" height="82" name="Set Future_Years" width="90" x="313" y="34">
    <parameter key="macro" value="futureYears"/>
    <parameter key="value" value="7"/>
    </operator>
    <connect from_port="in 1" to_op="Set Window_Size" to_port="through 1"/>
    <connect from_op="Set Window_Size" from_port="through 1" to_op="Set Horizon" to_port="through 1"/>
    <connect from_op="Set Horizon" from_port="through 1" to_op="Set Future_Years" to_port="through 1"/>
    <connect from_op="Set Future_Years" from_port="through 1" to_port="out 1"/>
    <portSpacing port="source_in 1" spacing="0"/>
    <portSpacing port="source_in 2" spacing="0"/>
    <portSpacing port="sink_out 1" spacing="0"/>
    <portSpacing port="sink_out 2" spacing="0"/>
    </process>
    </operator>
    <operator activated="true" class="split" compatibility="8.1.000" expanded="true" height="82" name="Split" width="90" x="313" y="85">
    <parameter key="attribute_filter_type" value="single"/>
    <parameter key="attribute" value="Year"/>
    <parameter key="split_pattern" value="-"/>
    </operator>
    <operator activated="true" class="rename" compatibility="8.1.000" expanded="true" height="82" name="Rename (2)" width="90" x="447" y="85">
    <parameter key="old_name" value="Year_1"/>
    <parameter key="new_name" value="Year"/>
    <list key="rename_additional_attributes"/>
    </operator>
    <operator activated="true" class="nominal_to_date" compatibility="8.1.000" expanded="true" height="82" name="Nominal to Date" width="90" x="648" y="85">
    <parameter key="attribute_name" value="Year"/>
    <parameter key="date_format" value="YYYY"/>
    </operator>
    <operator activated="true" class="set_role" compatibility="5.3.013" expanded="true" height="82" name="Set Role" width="90" x="782" y="85">
    <parameter key="attribute_name" value="Year"/>
    <parameter key="target_role" value="id"/>
    <list key="set_additional_roles"/>
    </operator>
    <operator activated="true" class="select_attributes" compatibility="8.1.000" expanded="true" height="82" name="Select Attributes" width="90" x="916" y="85">
    <parameter key="attribute_filter_type" value="subset"/>
    <parameter key="attributes" value="Precipitations"/>
    </operator>
    <operator activated="true" class="filter_examples" compatibility="6.4.000" expanded="true" height="103" name="Filter Examples" width="90" x="1050" y="85">
    <parameter key="condition_class" value="no_missing_attributes"/>
    <list key="filters_list"/>
    </operator>
    <operator activated="true" class="series:windowing" compatibility="5.2.000" expanded="true" height="82" name="Windowing for Training" width="90" x="1184" y="85">
    <parameter key="window_size" value="%{WindowSize}"/>
    <parameter key="create_label" value="true"/>
    <parameter key="label_attribute" value="Precipitations"/>
    <parameter key="horizon" value="%{horizon}"/>
    </operator>
    <operator activated="true" class="h2o:deep_learning" compatibility="7.6.001" expanded="true" height="82" name="Deep Learning" width="90" x="1318" y="34">
    <enumeration key="hidden_layer_sizes">
    <parameter key="hidden_layer_sizes" value="50"/>
    <parameter key="hidden_layer_sizes" value="50"/>
    </enumeration>
    <enumeration key="hidden_dropout_ratios"/>
    <list key="expert_parameters"/>
    <list key="expert_parameters_"/>
    </operator>
    <operator activated="true" class="series:windowing" compatibility="5.2.000" expanded="true" height="82" name="Windowing for Application" width="90" x="1318" y="136">
    <parameter key="window_size" value="%{WindowSize}"/>
    <parameter key="label_attribute" value="inputYt"/>
    </operator>
    <operator activated="true" class="extract_macro" compatibility="8.1.000" expanded="true" height="68" name="Extract Example Count" width="90" x="1519" y="136">
    <parameter key="macro" value="exampleCount"/>
    <list key="additional_macros"/>
    </operator>
    <operator activated="true" class="filter_example_range" compatibility="8.1.000" expanded="true" height="82" name="Filter Example Range" width="90" x="1653" y="136">
    <parameter key="first_example" value="%{exampleCount}"/>
    <parameter key="last_example" value="%{exampleCount}"/>
    </operator>
    <operator activated="true" class="remember" compatibility="8.1.000" expanded="true" height="68" name="Remember" width="90" x="1787" y="136">
    <parameter key="name" value="data"/>
    </operator>
    <operator activated="true" class="loop" compatibility="8.1.000" expanded="true" height="82" name="Loop" width="90" x="1519" y="34">
    <parameter key="iterations" value="%{futureYears}"/>
    <process expanded="true">
    <operator activated="true" class="recall" compatibility="8.1.000" expanded="true" height="68" name="Recall" width="90" x="45" y="136">
    <parameter key="name" value="data"/>
    </operator>
    <operator activated="true" class="apply_model" compatibility="7.1.001" expanded="true" height="82" name="Apply Model" width="90" x="179" y="30">
    <list key="application_parameters"/>
    </operator>
    <operator activated="true" class="multiply" compatibility="8.1.000" expanded="true" height="103" name="Multiply" width="90" x="447" y="30"/>
    <operator activated="true" class="materialize_data" compatibility="8.1.000" expanded="true" height="82" name="Materialize Data (2)" width="90" x="179" y="165"/>
    <operator activated="true" class="generate_attributes" compatibility="6.4.000" expanded="true" height="82" name="Increase Date (2)" width="90" x="313" y="165">
    <list key="function_descriptions">
    <parameter key="Year" value="date_add(Year, 1, DATE_UNIT_YEAR)"/>
    </list>
    </operator>
    <operator activated="true" class="set_role" compatibility="5.3.013" expanded="true" height="82" name="Set Role (2)" width="90" x="447" y="165">
    <parameter key="attribute_name" value="prediction(label)"/>
    <list key="set_additional_roles"/>
    </operator>
    <operator activated="true" class="select_attributes" compatibility="8.1.000" expanded="true" height="82" name="Select Attributes (3)" width="90" x="179" y="289">
    <parameter key="attribute_filter_type" value="single"/>
    <parameter key="attribute" value="Precipitations-9"/>
    <parameter key="invert_selection" value="true"/>
    </operator>
    <operator activated="true" class="rename" compatibility="8.1.000" expanded="true" height="82" name="Rename" width="90" x="313" y="289">
    <parameter key="old_name" value="Precipitations-8"/>
    <parameter key="new_name" value="Precipitations-9"/>
    <list key="rename_additional_attributes">
    <parameter key="Precipitations-7" value="Precipitations-8"/>
    <parameter key="Precipitations-6" value="Precipitations-7"/>
    <parameter key="Precipitations-5" value="Precipitations-6"/>
    <parameter key="Precipitations-4" value="Precipitations-5"/>
    <parameter key="Precipitations-3" value="Precipitations-4"/>
    <parameter key="Precipitations-2" value="Precipitations-3"/>
    <parameter key="Precipitations-1" value="Precipitations-2"/>
    <parameter key="Precipitations-0" value="Precipitations-1"/>
    <parameter key="prediction(label)" value="Precipitations-0"/>
    </list>
    </operator>
    <operator activated="true" class="remember" compatibility="8.1.000" expanded="true" height="68" name="Remember (2)" width="90" x="447" y="289">
    <parameter key="name" value="data"/>
    </operator>
    <connect from_port="input 1" to_op="Apply Model" to_port="model"/>
    <connect from_op="Recall" from_port="result" to_op="Apply Model" to_port="unlabelled data"/>
    <connect from_op="Apply Model" from_port="labelled data" to_op="Multiply" to_port="input"/>
    <connect from_op="Multiply" from_port="output 1" to_port="output 1"/>
    <connect from_op="Multiply" from_port="output 2" to_op="Materialize Data (2)" to_port="example set input"/>
    <connect from_op="Materialize Data (2)" from_port="example set output" to_op="Increase Date (2)" to_port="example set input"/>
    <connect from_op="Increase Date (2)" from_port="example set output" to_op="Set Role (2)" to_port="example set input"/>
    <connect from_op="Set Role (2)" from_port="example set output" to_op="Select Attributes (3)" to_port="example set input"/>
    <connect from_op="Select Attributes (3)" from_port="example set output" to_op="Rename" to_port="example set input"/>
    <connect from_op="Rename" from_port="example set output" to_op="Remember (2)" to_port="store"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="source_input 2" spacing="0"/>
    <portSpacing port="sink_output 1" spacing="0"/>
    <portSpacing port="sink_output 2" spacing="0"/>
    </process>
    </operator>
    <operator activated="true" class="append" compatibility="8.1.000" expanded="true" height="82" name="Append" width="90" x="1653" y="34"/>
    <connect from_op="Read Excel" from_port="output" to_op="Set Predictions_Params" to_port="in 1"/>
    <connect from_op="Set Predictions_Params" from_port="out 1" to_op="Split" to_port="example set input"/>
    <connect from_op="Split" from_port="example set output" to_op="Rename (2)" to_port="example set input"/>
    <connect from_op="Rename (2)" from_port="example set output" to_op="Nominal to Date" to_port="example set input"/>
    <connect from_op="Nominal to Date" from_port="example set output" to_op="Set Role" to_port="example set input"/>
    <connect from_op="Set Role" from_port="example set output" to_op="Select Attributes" to_port="example set input"/>
    <connect from_op="Select Attributes" from_port="example set output" to_op="Filter Examples" to_port="example set input"/>
    <connect from_op="Filter Examples" from_port="example set output" to_op="Windowing for Training" to_port="example set input"/>
    <connect from_op="Windowing for Training" from_port="example set output" to_op="Deep Learning" to_port="training set"/>
    <connect from_op="Windowing for Training" from_port="original" to_op="Windowing for Application" to_port="example set input"/>
    <connect from_op="Deep Learning" from_port="model" to_op="Loop" to_port="input 1"/>
    <connect from_op="Windowing for Application" from_port="example set output" to_op="Extract Example Count" to_port="example set"/>
    <connect from_op="Extract Example Count" from_port="example set" to_op="Filter Example Range" to_port="example set input"/>
    <connect from_op="Filter Example Range" from_port="example set output" to_op="Remember" to_port="store"/>
    <connect from_op="Loop" from_port="output 1" to_op="Append" to_port="example set 1"/>
    <connect from_op="Append" from_port="merged set" to_port="result 1"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    </process>
    </operator>
    </process>

    2. The parameters used in this process are (parameters you can set) :

     - Window size = 10 years

     - Horizon = 1 year

     - Prediction Future Years = 7 years

     

    3. I used a Deep Learning model, but you can try other models to improve the accuracy of your predictions.

     

    4. This process contains pre-processing on the format of the date (for example 1979-1980 ==> 1979 , 1980-1981 ==> 1980, etc.).

     

    5. You can find the Excel file I builded from you data by following this link :

     https://drive.google.com/open?id=1hiq6L4zWI24E086Icq2jBcGkSHOARsup

     

    I hope it helps,

     

    Regards,

     

    Lionel

     

    sgenzerthomas_wiedmann
  • oussama_salhi89oussama_salhi89 Member Posts: 3 Contributor I

    hello again dear @lionelderkrikor

    thank you very much to the solution 

    I know you gave me the solution but I am ashamed to say that I don't know how to apply it and I'am illiterate in RapidMiner I spend all the week to understand but I failed and I don't know how I can success my project graduation.

    regards ;

    oussama .

  • thomas_wiedmannthomas_wiedmann Member Posts: 60  Guru

    Hi @lionelderkrikor,

     

    I try to import your XML Process to lean whats your solution, but with RM 8.1.000 (Free) and get a lot of warnings.

     

    RapidMinerProzess.jpg

     

    RapidMinerProzess2.jpg

     

    What is to do, to get it run inside RM 8.1.000 (Free)

     

    Thanks!

    Thomas

     

     

  • mschmitzmschmitz Administrator, Moderator, Employee, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,077  RM Data Scientist

    Hi @thomas_wiedmann,

     

    you need to install value series extension. It's available in market place.

     

    Best,

    Martin

    - Head of Data Science Services at RapidMiner -
    Dortmund, Germany
    sgenzerthomas_wiedmann
  • thomas_wiedmannthomas_wiedmann Member Posts: 60  Guru

    Hi @mschmitz,

     

    thanks. I will checked this.

    BTW I wanted to "click on like" for your solution, but it has no effect. Sorry.

     

    Thanks!

    Thomas

     

     

  • thomas_wiedmannthomas_wiedmann Member Posts: 60  Guru

    After get this extention from marketplace, everything work well.
    A least one question: I have no idea why Date contain "Dec 28, yyyy" now in result. Why "Dec 28"?

     

    RapidMinerProzess3.jpg

     

    Thanks !

    Thomas

  • lionelderkrikorlionelderkrikor Moderator, RapidMiner Certified Analyst, Member Posts: 1,186   Unicorn

    Hi Thomas,

     

    Why "Dec 28"?

    It's a good question and I will make a confession : I don't know why......

    However good, in the nominal to date operator, I set "date format" as YYYY.

     

    Or maybe in the Loop - > Increase date / Generates attributes operator when :   

    Year = date_add(Year, 1, DATE_UNIT_YEAR)

     RapidMiner "forces" Year attribute to this format and value of "Dec 28"....

     

    Best regards,

     

    Lionel

      

  • Thomas_OttThomas_Ott RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 1,760   Unicorn

    @lionelderkrikor and @thomas_wiedmann I've encountered that issue before in a similar process and if I remember correctly it had to do with how the date-time was being intrepreted in the loop. I fixed it but I don't remember how I did it.

     

  • sgenzersgenzer 12Administrator, Moderator, Employee, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM Moderator Posts: 2,959  Community Manager

    oh the Dec 28 is a RapidMiner easter egg - that's @IngoRM's birthday. :smileyvery-happy:

     

    Sorry couldn't resist.

     

    Scott

     

    lionelderkrikor
  • lionelderkrikorlionelderkrikor Moderator, RapidMiner Certified Analyst, Member Posts: 1,186   Unicorn

    Hi @oussama_salhi89,

     

    Here some elements to better understand the process : 

    At the beginning of the process, we define the following parameters : 

     - Window size : determine how many "attributes" are created for the cross -sectionnal data. Each row of the original time series

    within the window width will become a new attribute. In our case, w = 10 (years)

     - Horizon : Determine how far out to make the forecast. In our case, h = 1 (year). 

    Our window size = 10 and horizon = 1, so the 11th row of the original time series becomes the first sample for the "label" variable.

     

    Time_series.png

    This figure shows the original data and the transformed output from the windowing process and describes the transformation details.

    The main point is that for the window selected and shown in the box, the target value is the value of Jan 1, 1989.

    When training, the model using this data, the attributes named Precipitations-9 through Precipitations-0 form the "independent variables".

     

    Then, the trained model is applied to generate forecast.

     

    I hope you understand better the "general philosophy" of this process.

     

    Moreover I suggest you to set a Breakpoint After on each operator (via right-clicking on an operator), to better understand

    the transformation of data step by step.

     

    I hope it helps,

     

    Regards,

     

    Lionel

     

     

     

  • lionelderkrikorlionelderkrikor Moderator, RapidMiner Certified Analyst, Member Posts: 1,186   Unicorn

    Hi, 

     

    @Thomas_Ott@thomas_wiedmann

     

    After trying several far fetched methods, I just add a Generate Attributes operator at the end of the process to convert

    the date attribute to string. Now only the year is displayed.

    Here the process : 

    <?xml version="1.0" encoding="UTF-8"?><process version="8.1.000">
    <context>
    <input/>
    <output/>
    <macros>
    <macro>
    <key>futureMonths</key>
    <value>15</value>
    </macro>
    <macro>
    <key>horizon</key>
    <value>1</value>
    </macro>
    <macro>
    <key>windowSize</key>
    <value>6</value>
    </macro>
    </macros>
    </context>
    <operator activated="true" class="process" compatibility="6.0.002" expanded="true" name="Process">
    <process expanded="true">
    <operator activated="true" class="read_excel" compatibility="8.1.000" expanded="true" height="68" name="Read Excel" width="90" x="45" y="85">
    <parameter key="excel_file" value="C:\Users\Lionel\Documents\Formations_DataScience\Rapidminer\Tests_Rapidminer\Precipitations_forecast\Precipitations_forecast.xlsx"/>
    <parameter key="imported_cell_range" value="A1:B33"/>
    <parameter key="first_row_as_names" value="false"/>
    <list key="annotations">
    <parameter key="0" value="Name"/>
    </list>
    <list key="data_set_meta_data_information">
    <parameter key="0" value="Year.true.polynominal.attribute"/>
    <parameter key="1" value="Precipitations.true.numeric.attribute"/>
    </list>
    </operator>
    <operator activated="true" class="subprocess" compatibility="8.1.000" expanded="true" height="82" name="Set Predictions_Params" width="90" x="179" y="85">
    <process expanded="true">
    <operator activated="true" class="set_macro" compatibility="8.1.000" expanded="true" height="82" name="Set Window_Size" width="90" x="45" y="34">
    <parameter key="macro" value="WindowSize"/>
    <parameter key="value" value="10"/>
    </operator>
    <operator activated="true" class="set_macro" compatibility="8.1.000" expanded="true" height="82" name="Set Horizon" width="90" x="179" y="34">
    <parameter key="macro" value="horizon"/>
    <parameter key="value" value="1"/>
    </operator>
    <operator activated="true" class="set_macro" compatibility="8.1.000" expanded="true" height="82" name="Set Future_Years" width="90" x="313" y="34">
    <parameter key="macro" value="futureYears"/>
    <parameter key="value" value="7"/>
    </operator>
    <connect from_port="in 1" to_op="Set Window_Size" to_port="through 1"/>
    <connect from_op="Set Window_Size" from_port="through 1" to_op="Set Horizon" to_port="through 1"/>
    <connect from_op="Set Horizon" from_port="through 1" to_op="Set Future_Years" to_port="through 1"/>
    <connect from_op="Set Future_Years" from_port="through 1" to_port="out 1"/>
    <portSpacing port="source_in 1" spacing="0"/>
    <portSpacing port="source_in 2" spacing="0"/>
    <portSpacing port="sink_out 1" spacing="0"/>
    <portSpacing port="sink_out 2" spacing="0"/>
    </process>
    </operator>
    <operator activated="true" class="split" compatibility="8.1.000" expanded="true" height="82" name="Split" width="90" x="313" y="85">
    <parameter key="attribute_filter_type" value="single"/>
    <parameter key="attribute" value="Year"/>
    <parameter key="split_pattern" value="-"/>
    </operator>
    <operator activated="true" class="rename" compatibility="8.1.000" expanded="true" height="82" name="Rename (2)" width="90" x="447" y="85">
    <parameter key="old_name" value="Year_1"/>
    <parameter key="new_name" value="Year"/>
    <list key="rename_additional_attributes"/>
    </operator>
    <operator activated="true" class="nominal_to_date" compatibility="8.1.000" expanded="true" height="82" name="Nominal to Date" width="90" x="581" y="85">
    <parameter key="attribute_name" value="Year"/>
    <parameter key="date_format" value="YYYY"/>
    </operator>
    <operator activated="true" class="set_role" compatibility="5.3.013" expanded="true" height="82" name="Set Role" width="90" x="715" y="85">
    <parameter key="attribute_name" value="Year"/>
    <parameter key="target_role" value="id"/>
    <list key="set_additional_roles"/>
    </operator>
    <operator activated="true" class="select_attributes" compatibility="8.1.000" expanded="true" height="82" name="Select Attributes" width="90" x="849" y="85">
    <parameter key="attribute_filter_type" value="subset"/>
    <parameter key="attributes" value="Precipitations"/>
    </operator>
    <operator activated="true" class="filter_examples" compatibility="6.4.000" expanded="true" height="103" name="Filter Examples" width="90" x="983" y="85">
    <parameter key="condition_class" value="no_missing_attributes"/>
    <list key="filters_list"/>
    </operator>
    <operator activated="true" class="series:windowing" compatibility="5.2.000" expanded="true" height="82" name="Windowing for Training" width="90" x="1117" y="85">
    <parameter key="window_size" value="%{WindowSize}"/>
    <parameter key="create_label" value="true"/>
    <parameter key="label_attribute" value="Precipitations"/>
    <parameter key="horizon" value="%{horizon}"/>
    </operator>
    <operator activated="true" class="h2o:deep_learning" compatibility="7.6.001" expanded="true" height="82" name="Deep Learning" width="90" x="1318" y="34">
    <enumeration key="hidden_layer_sizes">
    <parameter key="hidden_layer_sizes" value="50"/>
    <parameter key="hidden_layer_sizes" value="50"/>
    </enumeration>
    <enumeration key="hidden_dropout_ratios"/>
    <list key="expert_parameters"/>
    <list key="expert_parameters_"/>
    </operator>
    <operator activated="true" class="series:windowing" compatibility="5.2.000" expanded="true" height="82" name="Windowing for Application" width="90" x="1318" y="136">
    <parameter key="window_size" value="%{WindowSize}"/>
    <parameter key="label_attribute" value="inputYt"/>
    </operator>
    <operator activated="true" class="extract_macro" compatibility="8.1.000" expanded="true" height="68" name="Extract Example Count" width="90" x="1519" y="136">
    <parameter key="macro" value="exampleCount"/>
    <list key="additional_macros"/>
    </operator>
    <operator activated="true" class="filter_example_range" compatibility="8.1.000" expanded="true" height="82" name="Filter Example Range" width="90" x="1653" y="136">
    <parameter key="first_example" value="%{exampleCount}"/>
    <parameter key="last_example" value="%{exampleCount}"/>
    </operator>
    <operator activated="true" class="remember" compatibility="8.1.000" expanded="true" height="68" name="Remember" width="90" x="1787" y="136">
    <parameter key="name" value="data"/>
    </operator>
    <operator activated="true" class="loop" compatibility="8.1.000" expanded="true" height="82" name="Loop" width="90" x="1452" y="34">
    <parameter key="iterations" value="%{futureYears}"/>
    <process expanded="true">
    <operator activated="true" class="recall" compatibility="8.1.000" expanded="true" height="68" name="Recall" width="90" x="45" y="136">
    <parameter key="name" value="data"/>
    </operator>
    <operator activated="true" class="apply_model" compatibility="7.1.001" expanded="true" height="82" name="Apply Model" width="90" x="179" y="30">
    <list key="application_parameters"/>
    </operator>
    <operator activated="true" class="multiply" compatibility="8.1.000" expanded="true" height="103" name="Multiply" width="90" x="447" y="30"/>
    <operator activated="true" class="materialize_data" compatibility="8.1.000" expanded="true" height="82" name="Materialize Data (2)" width="90" x="179" y="136"/>
    <operator activated="true" class="generate_attributes" compatibility="6.4.000" expanded="true" height="82" name="Increase Date (2)" width="90" x="380" y="136">
    <list key="function_descriptions">
    <parameter key="Year" value="date_add(Year, 1, DATE_UNIT_YEAR)"/>
    </list>
    </operator>
    <operator activated="true" class="set_role" compatibility="5.3.013" expanded="true" height="82" name="Set Role (2)" width="90" x="715" y="187">
    <parameter key="attribute_name" value="prediction(label)"/>
    <list key="set_additional_roles"/>
    </operator>
    <operator activated="true" class="select_attributes" compatibility="8.1.000" expanded="true" height="82" name="Select Attributes (3)" width="90" x="179" y="289">
    <parameter key="attribute_filter_type" value="single"/>
    <parameter key="attribute" value="Precipitations-9"/>
    <parameter key="invert_selection" value="true"/>
    </operator>
    <operator activated="true" class="rename" compatibility="8.1.000" expanded="true" height="82" name="Rename" width="90" x="313" y="289">
    <parameter key="old_name" value="Precipitations-8"/>
    <parameter key="new_name" value="Precipitations-9"/>
    <list key="rename_additional_attributes">
    <parameter key="Precipitations-7" value="Precipitations-8"/>
    <parameter key="Precipitations-6" value="Precipitations-7"/>
    <parameter key="Precipitations-5" value="Precipitations-6"/>
    <parameter key="Precipitations-4" value="Precipitations-5"/>
    <parameter key="Precipitations-3" value="Precipitations-4"/>
    <parameter key="Precipitations-2" value="Precipitations-3"/>
    <parameter key="Precipitations-1" value="Precipitations-2"/>
    <parameter key="Precipitations-0" value="Precipitations-1"/>
    <parameter key="prediction(label)" value="Precipitations-0"/>
    </list>
    </operator>
    <operator activated="true" class="remember" compatibility="8.1.000" expanded="true" height="68" name="Remember (2)" width="90" x="447" y="289">
    <parameter key="name" value="data"/>
    </operator>
    <connect from_port="input 1" to_op="Apply Model" to_port="model"/>
    <connect from_op="Recall" from_port="result" to_op="Apply Model" to_port="unlabelled data"/>
    <connect from_op="Apply Model" from_port="labelled data" to_op="Multiply" to_port="input"/>
    <connect from_op="Multiply" from_port="output 1" to_port="output 1"/>
    <connect from_op="Multiply" from_port="output 2" to_op="Materialize Data (2)" to_port="example set input"/>
    <connect from_op="Materialize Data (2)" from_port="example set output" to_op="Increase Date (2)" to_port="example set input"/>
    <connect from_op="Increase Date (2)" from_port="example set output" to_op="Set Role (2)" to_port="example set input"/>
    <connect from_op="Set Role (2)" from_port="example set output" to_op="Select Attributes (3)" to_port="example set input"/>
    <connect from_op="Select Attributes (3)" from_port="example set output" to_op="Rename" to_port="example set input"/>
    <connect from_op="Rename" from_port="example set output" to_op="Remember (2)" to_port="store"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="source_input 2" spacing="0"/>
    <portSpacing port="sink_output 1" spacing="0"/>
    <portSpacing port="sink_output 2" spacing="0"/>
    </process>
    </operator>
    <operator activated="true" class="append" compatibility="8.1.000" expanded="true" height="82" name="Append" width="90" x="1586" y="34"/>
    <operator activated="true" class="generate_attributes" compatibility="6.4.000" expanded="true" height="82" name="Format Date (3)" width="90" x="1720" y="34">
    <list key="function_descriptions">
    <parameter key="Year" value="date_str_custom(Year,&quot;yyyy&quot;)"/>
    </list>
    </operator>
    <connect from_op="Read Excel" from_port="output" to_op="Set Predictions_Params" to_port="in 1"/>
    <connect from_op="Set Predictions_Params" from_port="out 1" to_op="Split" to_port="example set input"/>
    <connect from_op="Split" from_port="example set output" to_op="Rename (2)" to_port="example set input"/>
    <connect from_op="Rename (2)" from_port="example set output" to_op="Nominal to Date" to_port="example set input"/>
    <connect from_op="Nominal to Date" from_port="example set output" to_op="Set Role" to_port="example set input"/>
    <connect from_op="Set Role" from_port="example set output" to_op="Select Attributes" to_port="example set input"/>
    <connect from_op="Select Attributes" from_port="example set output" to_op="Filter Examples" to_port="example set input"/>
    <connect from_op="Filter Examples" from_port="example set output" to_op="Windowing for Training" to_port="example set input"/>
    <connect from_op="Windowing for Training" from_port="example set output" to_op="Deep Learning" to_port="training set"/>
    <connect from_op="Windowing for Training" from_port="original" to_op="Windowing for Application" to_port="example set input"/>
    <connect from_op="Deep Learning" from_port="model" to_op="Loop" to_port="input 1"/>
    <connect from_op="Windowing for Application" from_port="example set output" to_op="Extract Example Count" to_port="example set"/>
    <connect from_op="Extract Example Count" from_port="example set" to_op="Filter Example Range" to_port="example set input"/>
    <connect from_op="Filter Example Range" from_port="example set output" to_op="Remember" to_port="store"/>
    <connect from_op="Loop" from_port="output 1" to_op="Append" to_port="example set 1"/>
    <connect from_op="Append" from_port="merged set" to_op="Format Date (3)" to_port="example set input"/>
    <connect from_op="Format Date (3)" from_port="example set output" to_port="result 1"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    </process>
    </operator>
    </process>

    Best regards,

     

    Lionel

     

     

     

     

    Thomas_Ottthomas_wiedmann
  • thomas_wiedmannthomas_wiedmann Member Posts: 60  Guru

    @lionelderkrikor

     

    True, work fine..!

     

    RapidMiner.jpg

     

    Thanks!

    Thomas

    sgenzer
Sign In or Register to comment.