🎉 🎉. RAPIDMINER 9.8 IS OUT!!! 🎉 🎉
RapidMiner 9.8 continues to innovate in data science collaboration, connectivity and governance
CLICK HERE TO DOWNLOAD
Manual inspection of missclassified examples


in Help
Hello,
I'm trying to find out how, after training a classification model, I can look at the examples that were incorrectly classified. For now I can only see how many examples were incorrectly classified in the confusion matrix, but I want to inspect the missclassified examples manually. Since evaluation vector does not seem to be able to store such information I guess I need to somehow add another operator to achieve this, if it's even possible (which, in my own opinion, feels like a very basic feature, so I'm hoping it's there somewhere).
Kind regards,
Carl
Tagged:
0
Best Answer
-
sgenzer 12Administrator, Moderator, Employee, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM Moderator Posts: 2,957
 Community Manager
hi @Carl_Granström hmm well that does sound very basic. Funny thing is that I moderate this forum and have been on it for years - I cannot recall anyone asking!
Anyway it's pretty easy. I would just put a Filter Examples on the end like this:<?xml version="1.0" encoding="UTF-8"?><process version="9.5.000-BETA4"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="9.5.000-BETA4" expanded="true" name="Process"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="-1"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" class="retrieve" compatibility="9.5.000-BETA4" expanded="true" height="68" name="Retrieve Titanic Training" width="90" x="45" y="34"> <parameter key="repository_entry" value="//Samples/data/Titanic Training"/> </operator> <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.5.000-BETA4" expanded="true" height="103" name="Decision Tree" width="90" x="179" y="34"> <parameter key="criterion" value="gain_ratio"/> <parameter key="maximal_depth" value="10"/> <parameter key="apply_pruning" value="true"/> <parameter key="confidence" value="0.1"/> <parameter key="apply_prepruning" value="true"/> <parameter key="minimal_gain" value="0.01"/> <parameter key="minimal_leaf_size" value="2"/> <parameter key="minimal_size_for_split" value="4"/> <parameter key="number_of_prepruning_alternatives" value="3"/> </operator> <operator activated="true" class="apply_model" compatibility="9.5.000-BETA4" expanded="true" height="82" name="Apply Model" width="90" x="380" y="34"> <list key="application_parameters"/> <parameter key="create_view" value="false"/> </operator> <operator activated="true" class="filter_examples" compatibility="9.5.000-BETA4" expanded="true" height="103" name="Filter Examples" width="90" x="514" y="34"> <parameter key="parameter_expression" value="Survived!=[prediction(Survived)]"/> <parameter key="condition_class" value="expression"/> <parameter key="invert_filter" value="false"/> <list key="filters_list"/> <parameter key="filters_logic_and" value="true"/> <parameter key="filters_check_metadata" value="true"/> <description align="center" color="yellow" colored="true" width="126">here's where I only find incorrect predictions</description> </operator> <connect from_op="Retrieve Titanic Training" from_port="output" to_op="Decision Tree" to_port="training set"/> <connect from_op="Decision Tree" from_port="model" to_op="Apply Model" to_port="model"/> <connect from_op="Decision Tree" from_port="exampleSet" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Filter Examples" to_port="example set input"/> <connect from_op="Filter Examples" from_port="example set output" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator> </process>
Scott1
Answers
You need to connect the "Exa" port of the "Performance" Operator inside the validation to the "tes" port. Then you connect the "Tes" output of cross-validation operator to the process output or filter examples as Scott did in earlier example.
Varun
https://www.varunmandalapu.com/
Be Safe. Follow precautions and Maintain Social Distancing
In deed, Split Validation operator has no tes output port.
But you can extract the test set using the association Remember/Recall operators.
Take a look at this process :
Regards,
Lionel